Skip to main content Accessibility help

Multimineral nutritional supplements in a nano-CaO matrix

  • Jesper T.N. Knijnenburg (a1), Florentine M. Hilty (a2), Frank Krumeich (a3), Michael B. Zimmermann (a4) and Sotiris E. Pratsinis (a5)...


The fast dissolution of certain calcium-containing compounds makes them attractive carriers for trace minerals in nutritional applications, e.g., iron and zinc to alleviate mineral deficiencies in affected people. Here, CaO-based nanostructured mixed oxides containing nutritionally relevant amounts of Fe, Zn, Cu, and Mn were produced by one-step flame spray pyrolysis. The compounds were characterized by nitrogen adsorption, x-ray diffraction, (scanning) transmission electron microscopy, and thermogravimetric analysis. Dissolution in dilute acid (i.d.a.) was measured as an indicator of their in vivo bioavailability. High contents of calcium resulted in matrix encapsulation of iron and zinc preventing formation of poorly soluble oxides. For 3.6 ≤ Ca:Fe ≤ 10.8, Ca2Fe2O5 coexisted with CaO. For Ca/Zn compounds, no mixed oxides were obtained, indicating that the Ca/Zn composition can be tuned without affecting their solubility i.d.a. Aging under ambient conditions up to 225 days transformed CaO to CaCO3 without affecting iron solubility i.d.a. Furthermore, Cu and Mn could be readily incorporated in the nanostructured CaO matrix. All such compounds dissolved rapidly and completely i.d.a., suggesting good in vivo bioavailability.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Allen, L., De Benoist, B., Dary, O., and Hurrell, R.F.: Guidelines on Food Fortification with Micronutrients (World Health Org., Geneva, 2006).
2.WHO: Worldwide Prevalence of Anaemia 1993-2005: WHO Global Database on Anaemia (World Health Org., Geneva, 2008).
3.Zimmermann, M.B. and Hurrell, R.F.: Nutritional iron deficiency. Lancet 370, 511 (2007).
4.Heath, A.L.M. and Fairweather-Tait, S.J.: Clinical implications of changes in the modern diet: Iron intake, absorption and status. Best Pract. Res. Clin. Haematol. 15, 225 (2002).
5.Scholl, T.O.: Iron status during pregnancy: Setting the stage for mother and infant. Am. J. Clin. Nutr. 81, 1218S (2004).
6.Haas, J.D. and Brownlie, T.I.V.: Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 131, 676S (2001).
7.Hotz, C. and Brown, K. H. (eds): Assessment of the Risk of Zinc Deficiency in Populations and Options for Its Control. Food Nutr. Bull. 25, S91 (2004).
8.Wieringa, F.T., Berger, J., Dijkhuizen, M.A., Hidayat, A., Ninh, N.X., Utomo, B., Wasantwisut, E., and Winichagoon, P.: Combined iron and zinc supplementation in infants improved iron and zinc status, but interactions reduced efficacy in a multicountry trial in southeast Asia. J. Nutr. 137, 466 (2007).
9.De Jong, N., Ocke, M.C., Branderhorst, H.A.C., and Friele, R.: Demographic and lifestyle characteristics of functional food consumers and dietary supplement users. Br. J. Nutr. 89, 273 (2003).
10.Marques-Vidal, P., Pecoud, A., Hayoz, D., Paccaud, F., Mooser, V., Waeber, G., and Vollenweider, P.: Prevalence and characteristics of vitamin or dietary supplement users in Lausanne, Switzerland: the CoLaus study. Eur. J. Clin. Nutr. 63, 273 (2009).
11.Bailey, R.L., Gahche, J.J., Lentino, C.V., Dwyer, J.T., Engel, J.S., Thomas, P.R., Betz, J.M., Sempos, C.T., and Picciano, M.F.: Dietary supplement use in the United States, 2003-2006. J. Nutr. 141, 261 (2011).
12.Webb, G.P.: Dietary Supplements and Functional Foods, 2nd ed. (Wiley-Blackwell, Chichester, 2011).
13.Fairweather-Tait, S.J. and Teucher, B.: Iron and calcium bioavailability of fortified foods and dietary supplements. Nutr. Rev. 60, 360 (2002).
14.European Parliament and the Council of the European Union: Directive 2002/46/EC of the European Parliament and the Council of 10 June 2002 (Official Journal of the European Communities, Luxemburg, 12.7.2002, L.183, 2002), p. 5157.
15.Flynn, A. and Cashman, K.: Chapter 2: Calcium, in The Mineral Fortification of Foods, edited by Hurrell, R.F. (Leatherhead Publishing, Surrey, UK, 1999), p. 1853.
16.Harnby, N., Edwards, M.F., and Nienow, A.W.: Mixing in the Process Industries (Butterworth-Heinemann, Oxford, 1997).
17.Wei, D.G., Dave, R., and Pfeffer, R.: Mixing and characterization of nanosized powders: An assessment of different techniques. J. Nanopart. Res. 4, 21 (2002).
18.Miller, D.D.: Food nanotechnology: New leverage against iron deficiency. Nat. Nanotechnol. 5, 318 (2010).
19.Zimmermann, M.B. and Hilty, F.M.: Nanocompounds of iron and zinc: Their potential in nutrition. Nanoscale 3, 2390 (2011).
20.Hilty, F.M., Arnold, M., Hilbe, M., Teleki, A., Knijnenburg, J.T.N., Ehrensperger, F., Hurrell, R.F., Pratsinis, S.E., Langhans, W., and Zimmermann, M.B.: Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotechnol. 5, 374 (2010).
21.Swain, J.H., Newman, S.M., and Hunt, J.R.: Bioavailability of elemental iron powders to rats is less than bakery-grade ferrous sulfate and predicted by iron solubility and particle surface area. J. Nutr. 133, 35463552 (2003).
22.Motzok, I., Pennell, M.D., Davies, M.I., and Ross, H.U.: Effect of particle size on the biological availability of reduced iron. J. Assoc. Off. Anal. Chem. 58, 99 (1975).
23.Rohner, F., Ernst, F.O., Arnold, M., Hilbe, M., Biebinger, R., Ehrensperger, F., Pratsinis, S.E., Langhans, W., Hurrell, R.F., and Zimmermann, M.B.: Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137, 614 (2007).
24.Hilty, F.M., Knijnenburg, J.T.N., Teleki, A., Krumeich, F., Hurrell, R.F., Pratsinis, S.E., and Zimmermann, M.B.: Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods. J. Food Sci. 76, N2 (2011).
25.Madler, L., Kammler, H.K., Mueller, R., and Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369 (2002).
26.Strobel, R. and Pratsinis, S.E.: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).
27.Otten, J.J., Hellwig, J.P., and Mayers, L.D.: Dietary Reference Intakes: The Essential Guide to Nutrient Requirements (Institute of Medicine of the National Academies, N.W. Washington DC, 2006).
28.Hilty, F.M., Teleki, A., Krumeich, F., Buchel, R., Hurrell, R.F., Pratsinis, S.E., and Zimmermann, M.B.: Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology 20, 475101 (2009).
29.Height, M.J., Madler, L., Pratsinis, S.E., and Krumeich, F.: Nanorods of ZnO made by flame spray pyrolysis. Chem. Mater. 18, 572 (2006).
30.Camenzind, A., Strobel, R., and Pratsinis, S.E.: Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chem. Phys. Lett. 415, 193 (2005).
31.Boynton, R.S.: Chemistry and Technology of Lime and Limestone, 1st ed. (John Wiley & Sons, New York, 1966).
32.Shih, S.M., Ho, C.S., Song, Y.S., and Lin, J.P.: Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind. Eng. Chem. Res. 38, 1316 (1999).
33.Dheilly, R.M., Tudo, J., and Queneudec, M.: Influence of climatic conditions on the carbonation of quicklime. J. Mater. Eng. Perform. 7, 789 (1998).
34.Silaban, A. and Harrison, D.P.: High temperature capture of carbon dioxide: Characteristics of the reversible reaction between CaO(s) and CO2(g). Chem. Eng. Commun. 137, 177 (1995).
35.Lu, H., Smirniotis, P.G., Ernst, F.O., and Pratsinis, S.E.: Nanostructured Ca-based sorbents with high CO2 uptake efficiency. Chem. Eng. Sci. 64, 1936 (2009).
36.Huber, M., Stark, W.J., Loher, S., Maciejewski, M., Krumeich, F., and Baiker, A.: Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 648650 (2005).
37.Rudin, T., Wegner, K., and Pratsinis, S.E.: Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. J. Nanopart. Res. 13, 2715 (2011).
38.Bergman, B.: Solid-state reactions between CaO powder and Fe2O3. J. Am. Ceram. Soc. 69, 608 (1986).
39.Radha, A.V., Forbes, T.Z., Killian, C.E., Gilbert, P., and Navrotsky, A.: Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 107, 16438 (2010).
40.Fisler, D.K., Gale, J.D., and Cygan, R.T.: A shell model for the simulation of rhombohedral carbonate minerals and their point defects. Am. Mineral. 85, 217 (2000).
41.Haynes, W.M.: CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press/Taylor and Francis, Boca Raton, FL, 2012).
42.Yoder, C.H. and Flora, N.J.: Geochemical applications of the simple salt approximation to the lattice energies of complex materials. Am. Mineral. 90, 488 (2005).
43.Madler, L., Stark, W.J., and Pratsinis, S.E.: Rapid synthesis of stable ZnO quantum dots. J. Appl. Phys. 92, 6537 (2002).
44.Vemury, S. and Pratsinis, S.E.: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).
45.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).
46.Tani, T., Madler, L., and Pratsinis, S.E.: Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. J. Mater. Sci. 37, 4627 (2002).
47.Ghosh, M. and Raychaudhuri, A.K.: Structure and optical properties of Cd-substituted ZnO (Zn1-xCdxO) nanostructures synthesized by the high-pressure solution route. Nanotechnology 18, 115618 (2007).
48.Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R.: Vapor synthesis of Al-doped titania powders. J. Mater. Res. 9, 1241 (1994).
49.Strobel, R. and Pratsinis, S.E.: Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Phys. Chem. Chem. Phys. 13, 9246 (2011).
50.Doman, R.C., Barr, J.B., McNally, R.N., and Alper, A.M.: Phase equilibria in the system CaO-MgO. J. Am. Ceram. Soc. 46, 313 (1963).
51.Reeder, R.J., Lamble, G.M., and Northrup, P.A.: XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements. Am. Mineral. 84, 1049 (1999).
52.Shils, M.E., Olson, J.A., Shike, M., and Ross, A.C.: Modern Nutrition in Health and Disease, 10th ed. (Lippincott Williams & Wilkins, Philadelphia, 2006).
53.Lynch, S.R.: The effect of calcium on iron absorption. Nutr. Res. Rev. 13, 141 (2000).


Multimineral nutritional supplements in a nano-CaO matrix

  • Jesper T.N. Knijnenburg (a1), Florentine M. Hilty (a2), Frank Krumeich (a3), Michael B. Zimmermann (a4) and Sotiris E. Pratsinis (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed