Skip to main content Accessibility help
×
Home

Multigeneration solution-processed method for silver nanotriangles exhibiting narrow linewidth (170 nm) absorption in near-infrared

  • Anmol Walia (a1), Sandeep Kumar (a1), Abhishek Ramachandran (a2), Asmita Sharma (a3), Rajinder Deol (a1), Ghassan E. Jabbour (a4), Ravi Shankar (a3) and Madhusudan Singh (a1)...

Abstract

Bottom-up assembly of nanomaterials using solution-processed methods is ideally suited for use in fabrication of large-area optoelectronic devices. Tailorable visible and near-infrared absorption in shaped nanostructured noble metals is strongly influenced by localized plasmon resonance effects. Obtaining sharp and selective absorption with solution-processed methods is a challenge and requires suitable control on the growth kinetics, which ultimately results in appropriate size and morphology of the final product. In this work, a photo-assisted multigenerational growth process for synthesis of silver nanotriangle ink with narrow linewidth absorbance is developed. This technique combines photochemical and seed-mediated growth approaches. The resulting ink exhibits a sharp absorption at 700 nm with full width at half maximum of 170 nm, verified by absorption as well as dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy measurements. Numerical modeling using finite-difference time-domain calculations yields a close match with observed absorption and is used to examine electric field distribution and enhancement factor resonating at 720 nm. The synthesis technique is potentially useable for production of highly selective absorbers in solution phase.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: msingh@ee.iitd.ac.in

References

Hide All
1.Choi, H.W., Zhou, T., Singh, M., and Jabbour, G.E.: Recent developments and directions in printed nanomaterials. Nanoscale 7, 3338 (2015).
2.Xiao, M., Jiang, R., Wang, F., Fang, C., Wang, J., and Yu, J.C.: Plasmon-enhanced chemical reactions. J. Mater. Chem. A 1, 5790 (2013).
3.Wang, F., Li, C., Chen, H., Jiang, R., Sun, L.D., Li, Q., Wang, J., Yu, J.C., and Yan, C.H.: Plasmonic harvesting of light energy for suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588 (2013).
4.Yao, K., Salvador, M., Chueh, C.C., Xin, X.K., Xu, Y.X., deQuilettes, D.W., Hu, T., Chen, Y., Ginger, D.S., and Jen, A.K.Y.: A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 4, 1400206 (2014).
5.Wang, H., Lim, J.W., Mota, F.M., Jang, Y.J., Yoon, M., Kim, H., Hu, W., Noh, Y.Y., and Kim, D.H.: Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J. Mater. Chem. C 5, 399 (2017).
6.Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., and Baxter, S.C.: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).
7.Tagliabue, G., Jermyn, A.S., Sundararaman, R., Welch, A.J., DuChene, J.S., Pala, R., Davoyan, A.R., Narang, P., and Atwater, H.A.: Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).
8.Runnerstrom, E.L., Llordés, A., Lounis, S.D., and Milliron, D.J.: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555 (2014).
9.Llordés, A., Wang, Y., Martinez, A.F., Xiao, P., Lee, T., Poulain, A., Zandi, O., Saez Cabezas, C.A., Henkelman, G., and Milliron, D.J.: Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat. Mater. 15, 1267 (2016).
10.Llorente, V.B., Dzhagan, V.M., Gaponik, N., Iglesias, R.A., Zahn, D.R.T., and Lesnyak, V.: Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals. J. Phys. Chem. C 121, 18244 (2017).
11.Garreau, A., Tabatabaei, M., Hou, R., Wallace, G.Q., Norton, P.R., and Lagugné-Labarthet, F.: Probing the plasmonic properties of heterometallic nanoprisms with near-field fluorescence microscopy. J. Phys. Chem. C 120, 20267 (2016).
12.Wisser, F.M., Schumm, B., Mondin, G., Grothe, J., and Kaskel, S.: Precursor strategies for metallic nano and micropatterns using soft lithography. J. Phys. Chem. C 3, 2717 (2015).
13.Ibañez, D., Izquierdo, D., Blanco, C.F., Heras, A., and Colina, A.: Electrode-position of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 49, 482 (2018).
14.Raut, N.C. and Al-Shamery, K.: Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6, 1618 (2018).
15.Finn, D.J., Lotya, M., and Coleman, J.N.: Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7, 9254 (2015).
16.Singh, M., Haverinen, H.M., Yoshioka, Y., and Jabbour, G.E.: Active electronics. In Inkjet Technology for Digital Fabrication, I.M. Hutchings and G.D. Martin, eds. (John Wiley & Sons, USA, 2012); p. 207.
17.Singh, M., Haverinen, H.M., Dhagat, P., and Jabbour, G.E.: Inkjet printing and its applications. Adv. Mater. 22, 673 (2010).
18.Vicente, A.T., Araújo, A., Mendes, M.J., Nunes, D., Oliveira, M.J., Sobrado, O.S., Ferreira, M.P., Águas, H., Fortunato, E., and Martins, R.: Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 6, 3143 (2018).
19.Ringe, E., Van Duyne, R.P., and Marks, L.D.: Kinetic and thermodynamic modified wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859 (2013).
20.Ho, W.J., Fen, S., and Liu, J.J.: Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl. Phys. A 124, 29 (2018).
21.Murphy, G.P., Gough, J.J., Higgins, L.J., Karanikolas, V.D., Wilson, K.M., Coindreau, J.A.G., Zubialevich, V.Z., Parbrook, P.J., and Bradley, A.L.: Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well. Nanotechnology 28, 15401 (2017).
22.Ye, S., Song, J., Tian, Y., Chen, L., Wang, D., Niu, H., and Qu, J.: Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7, 12706 (2015).
23.Shankar, R., Shahi, V., and Sahoo, U.: Comparative study of linear poly(alkylarylsilane)s as reducing agents toward Ag(I) and Pd(II) ions synthesis of polymer-metal nanocomposites with variable size domains of metal nanoparticles. Chem. Mater. 22, 1367 (2010).
24.Kim, B.H. and Lee, J.S.: One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 149, 678 (2015).
25.Bastús, N.G., Merkoçi, F., Piella, J., and Puntes, V.: Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 26, 2836 (2014).
26.Park, Y.M., Lee, B.G., Weon, J., and Kim, M.H.: One-step synthesis of silver nanoplates with high aspect ratios: Using coordination of silver ions to enhance lateral growth. RSC Adv. 6, 95768 (2016).
27.Li, X., Choy, W., Lu, H., Sha, W.E.I., and Ho, A.: Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 23, 2728 (2013).
28.Abulikemu, M., Da’as, E.H., Haverinen, H., Cha, D., Malik, M.A., and Jabbour, G.E.: In situ synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing. Angew. Chem. 126, 430 (2014).
29.Hao, Y., Hao, Y., Sun, Q., Cui, Y., Li, Z., Ji, T., Wang, H., and Zhu, F.: Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: Optical coupling and interfacial engineering. Mater. Today Energy 3, 84 (2017).
30.Kulkarni, A.P., Noone, K.M., Munechika, K., Guyer, S.R., and Ginger, D.S.: Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501 (2010).
31.Kumar, A., Kim, S., and Nam, J.M.: Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 138, 14509 (2016).
32.Jensen, T.R., Malinsky, M.D., Haynes, C.L., and Duyne, R.P.V.: Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. C 104, 10549 (2000).
33.Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Duyne, R.P.V., and Zou, S.: Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368 (2005).
34.Liu, X., Li, L., Yang, Y., Yin, Y., and Gao, C.: One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 6, 4513 (2014).
35.Wu, C., Zhou, X., and Wei, J.: Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res. Lett. 10, 354 (2015).
36.Khan, A.U., Zhou, Z., Krause, J., and Liu, G.: Poly(vinylpyrrolidone)-free multistep synthesis of silver nanoplates with plasmon resonance in the near infrared range. Small 13, 1701715 (2017).
37.Yen, C.W., Puig, H., Tam, J.O., Márquez, J.G., Bosch, I., Schifferli, K., and Gehrke, L.: Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and ebola viruses. Lab Chip 15, 1638 (2015).
38.Zheng, X., Peng, Y., Cui, X., and Zheng, W.: Modulation of the shape and localized surface plasmon resonance of silver nanoparticles via halide ion etching and photochemical regrowth. Mater. Lett. 173, 88 (2016).
39.Shuford, K.L., Ratner, M.A., and Schatz, G.C.: Multipolar excitation in triangular nanoprisms. J. Chem. Phys. 123, 114713 (2005).
40.Tang, B., Zhang, M., Yao, Y., Sun, L., Li, J., Xu, S., Chen, W., Xu, W., and Wang, X.: Photoinduced reversible shape conversion of silver nanoparticles assisted by TiO2. Phys. Chem. Chem. Phys. 16, 21999 (2014).
41.Lee, G.P., Shi, Y., Lavoie, E., Daeneke, T., Reineck, P., Cappel, U.B., Huang, D.M., and Bach, U.: Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano 7, 5911 (2013).
42.Myroshnychenko, V., Nishio, N., Abajo, F.J.G., Förstner, J., and Yamamoto, N.: Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436 (2018).
43.Tanabe, K.: Field enhancement around metal nanoparticles and nanoshells: A systematic investigation. J. Phys. Chem. C 112, 15721 (2008).
44.Chanda, D., Shigeta, K., Truong, T., Lui, E., Mihi, A., Schulmerich, M., Braun, P.V., Bhargava, R., and Rogers, J.A.: Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat. Commun. 2, 479 (2011).
45.Wang, J., Fan, C., Ding, P., He, J., Cheng, Y., Hu, W., Cai, G., Liang, E., and Xue, Q.: Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012).
46.Bahramipanah, M., Abrishamian, M.S., Mirtaheri, S.A., and Liu, J.M.: Ultracompact plasmonic loop–stub notch filter and sensor. Sens. Actuators, B 194, 311 (2014).
47.Yi, F., Shim, E., Zhu, A.Y., Zhu, H., Reed, J.C., and Cubukcu, E.: Electrically tunable plasmonic absorber enabled by indium tin oxide. In CLEO: 2013, Vol. 1 (IEEE, San Jose, CA, 2013); pp. 12.
48.Chen, X., Shi, Y., Lou, F., Chen, Y., Yan, M., Wosinski, L., and Qiu, M.: Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express 22, 25233 (2014).
49.Maillard, M., Huang, P., and Brus, L.: Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611 (2003).
50.Palik, E.D.: Handbook of Optical Constants of Solids, 1st ed. (Academic Press, Newton, Massachusetts, 1985).

Keywords

Multigeneration solution-processed method for silver nanotriangles exhibiting narrow linewidth (170 nm) absorption in near-infrared

  • Anmol Walia (a1), Sandeep Kumar (a1), Abhishek Ramachandran (a2), Asmita Sharma (a3), Rajinder Deol (a1), Ghassan E. Jabbour (a4), Ravi Shankar (a3) and Madhusudan Singh (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed