Skip to main content Accessibility help

Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials

  • Guoxiu Tong (a1), Wenhua Wu (a1), Ru Qiao (a1), Jinhao Yuan (a1), Jianguo Guan (a2) and Haisheng Qian (a3)...


In the present work, Fe3O4 nanospheres, sponges, and urchins were prepared. Investigation of static magnetic and microwave electromagnetic (EM) characteristics of polymorphic Fe3O4 nanomaterials showed that morphology plays a crucial role in determining the resulting properties. Compared with Fe3O4 nanospheres and urchins, enhanced saturation magnetization and coercivity were observed in Fe3O4 sponges composed of ordered nanofibers. Enhancement of saturation magnetization and coercivity are associated with increased magnetic interactions and shape anisotropy, respectively. The Fe3O4 sponges and urchins produced reflection loss (RL) values of −35.77 dB at 8.0 GHz and −43.23 dB at 16.8 GHz, respectively. The excellent microwave absorption performance is ascribed to their unique morphologies. Such morphologies resulted in reinforced EM parameters and multiresonant behavior.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tong, G.X., Wu, W.H., Guan, J.G., Qian, H.S., and Yuan, J.H.: Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J. Alloy. Comp. 509, 4320 (2011).
2.Fang, X.S., Ye, C.H., Xie, T., Wang, Z.Y., Zhao, J.W., and Zhang, L.D.: Regular MgO nanoflowers and their enhanced dielectric responses. Appl. Phys. Lett. 88, 013101 (2006).
3.Cao, M.S., Shi, X.L., Fang, X.Y., Jin, H.B., Hou, Z.L., Zhou, W., and Chen, Y.J.: Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91, 203110 (2007).
4.Zhou, R.F., Qiao, L., Feng, H.T., Chen, J.T., Yan, D., Wu, Z.G., and Yan, P.X.: Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J. Appl. Phys. 104, 094101 (2008).
5.Yan, D., Cheng, S., Zhou, R.F., Chen, J.T., Feng, J.J., Feng, H.T., Li, H.J., Wu, Z.G., Wang, J., and Yan, P.X.: Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 20, 105706 (2009).
6.Tong, G.X., Guan, J.G., Xiao, Z.D., Mou, F.Z., Wang, W., and Yan, G.Q.: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).
7.Yu, H., Chen, M., Rice, P.M., Wang, S.X., White, R.L., and Sun, S.H.: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379 (2005).
8.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).
9.Zeng, H., Li, J., Wang, Z.L., Liu, J.P., and Sun, S.H.: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187 (2004).
10.Peng, S. and Sun, S.H.: Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 46, 4155 (2007).
11.Chen, Y.J., Gao, P., Wang, R.X., Zhu, C.L., Wang, L.J., Cao, M.S., and Jin, H.B.: Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061 (2009).
12.Cao, J., Fu, W.Y., Yang, H.B., Yu, Q.J., Zhang, Y.Y., Wang, S.M., Zhao, H., Sui, Y.M., Zhou, X.M., Zhao, W.Y., Leng, Y., Zhao, H., Chen, H., and Qi, X.F.: Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites. Mater. Sci. Eng., B 175, 56 (2010).
13.Zhao, R., Jia, K., Wei, J.J., Pu, J.X., and Liu, X.B.: Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 64, 457 (2010).
14.Yu, W.G., Zhang, T.L., Zhang, J.G., Qiao, X.J., Yang, L., and Liu, Y.H.: The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998 (2006).
15.Yan, G.Q., Guan, J.G., and Wang, W.: Monodispersed Fe3O4 hollow submicro-spheres prepared by pyrolysis-deoxidization. Acta Phys. Chim. Sin. 23, 1958 (2007).
16.Tong, G.X., Guan, J.G., and Zhang, Q.J.: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater. Chem. Phys. 127, 371 (2011).
17.Tong, G.X., Guan, J.G., Wu, W.H., Li, L.C., Guan, Y., and Hua, Q.: Preparation and electrochemical properties of urchin-like α-Fe2O3 nanomaterials. Sci. China Technol. Sci. 53, 1897 (2010).
18.Tong, G.X.: Study on gas flow/gas bubbles induced self-assembly techniques and magnetic nanostructures. Ph.D. Dissertation. Wuhan University of Technology, Wuhan, China, 119 (2009).
19.Osterhout, Von: Magnetic Oxides, in: Magnetic Oxides, edited by Craik, D.S. (Wiley, New York, 1975), p. 700.
20.Wang, X., Gong, R.Z., Li, P.G., Liu, L.Y., and Cheng, W.M.: Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng., A 466, 178 (2007).
21.Kim, Y.D., Chung, J.Y., Kim, J., and Jeon, H.: Formation of nanocrystalline Fe-Co powders produced by mechanical alloying. Mater. Sci. Eng., A 219, 17 (2000).
22.Wang, J., Sun, J.J., Sun, Q., and Chen, Q.W.: One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38, 1113 (2003).
23.Li, Z.W., Chen, L., Ong, C.K., and Yang, Z.: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).
24.Mørup, S., Madsen, M.B., Franck, J., Villandsen, J., and Koch, C.J.W.: A new interpretation of Mössbauer spectra of microcrystalline goethite: “Super-ferromagnetism” or “super-spin-glass” behaviour? J. Magn. Magn. Mater. 40, 163 (1983).
25.Li, Z.W., Ong, C.K., Yang, Z., Wei, F.L., Zhou, X.Z., Zhao, J.H., and Morrish, A.H.: Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles. Phys. Rev. B 62, 6530 (2000). Bakker, P.M.A., De Grave, E., Vandenberghe, R.E., and Bowen, L.H.: Mössbauer study of small-particle maghemite. Hyperfine Interact. 54, 493 (1990).
27.Wang, C., Han, X.J., Xu, P., Wang, J.Y., Du, Y.C., Wang, X.H., Qin, W., and Zhang, T.: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114, 3196 (2010).
28.Niu, H.L., Chen, Q.W., Ning, M., Jia, Y.S., and Wang, X.J.: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3998 (2004).
29.Tong, G.X., Guan, J.G., Xiao, Z.D., Huang, X., and Guan, Y.: In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. J. Nanopart. Res. 12, 3025 (2010).
30.Tong, G.X., Hua, Q., Wu, W.H., Qin, M.Y., Li, L.C., and Gong, P.J.: Effect of liquid-solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Technol. Sci. 54, 484 (2011).
31.Yang, Y., Xu, C.L., Xia, Y.X., Wang, T., and Li, F.S.: Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Comp. 493, 549 (2010).
32.Tong, G.X., Wu, W.H., Hua, Q., Miao, Y.Q., Guan, J.G., and Qian, H.S.: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).
33.Tong, G.X., Guan, J.G., Fan, X.A., Wang, W., and Li, W.: Influences of pyrolysis temperature on static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sin. 44, 867 (2008).
34.Ni, S.B., Sun, X.L., Wang, X.H., Zhou, G., Yang, F., Wang, J.M., and He, D.Y.: Low-temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124, 353 (2010).
35.Li, X.A., Han, X.J., Tan, Y.J., and Xu, P.: Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J. Alloy. Comp. 464, 352 (2008).
36.Li, Z.B., Beng, Y.D., Shen, B., and Hu, W.B.: Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres. Mater. Sci. Eng., B 146, 112 (2009).


Related content

Powered by UNSILO
Type Description Title
Supplementary Information

Tong Supporting Information
Tong Supporting Information

 Word (426 KB)
426 KB

Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials

  • Guoxiu Tong (a1), Wenhua Wu (a1), Ru Qiao (a1), Jinhao Yuan (a1), Jianguo Guan (a2) and Haisheng Qian (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.