Skip to main content Accessibility help

Monolithic silsesquioxane materials with well-defined pore structure

  • Kazuyoshi Kanamori (a1)
  • Please note a correction has been issued for this article.


In this article, monolithic porous silsesquioxane materials, which are derived by sol–gel from trialkoxysilanes with substituent groups such as trimethoxysilane (HTMS), methyltrimethoxysilane (MTMS), and vinyltrimethoxysilane (VTMS), are reviewed with a special emphasis on our recent works. Careful controls over fundamental synthetic parameters such as pH, amounts of water and solvent, and kind of solvent and additives play a crucial role in the formation of monolithic gels based on random polysiloxane networks. Crystalline/amorphous precipitation is otherwise observed when the formation of isolated species including polyhedral oligomeric silsesquioxanes dominates or if phase separation of the hydrophobic networks in aqueous media is not adequately controlled. In the successfully controlled system, pore size can be varied from a few tens of nanometers to a few tens of micrometers; porous materials such as transparent aerogels and hierarchically porous monoliths have been explored. In addition, unique properties derived from trialkoxysilanes such as reactivity of the pore surface and flexible mechanical properties are demonstrated. Possibilities in the silsesquioxane materials with controlled pore structures are discussed.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Sanchez, C. and Ribot, F.: Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 18, 5363 (2006).
2. Sanchez, C., Belleville, P., Popall, M., and Nicole, L.: Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696753 (2011).
3. Sanchez, C., Boissiere, C., Cassaignon, S., Chaneac, C., Durupthy, O., Faustini, M., Grosso, D., Laberty-Robert, C., Nicole, L., Portehault, D., Ribot, F., Rozes, L., and Sassoye, C.: Molecular engineering of functional inorganic and hybrid materials. Chem. Mater. 26, 221238 (2014).
4. Schmidt, H. and Wolter, H.: Organically modified ceramics and their applications. J. Non-Cryst. Solids 121, 428435 (1990).
5. Novak, B.: Hybrid nanocomposite materials – Between inorganic glasses and organic polymers. Adv. Mater. 5, 422433 (1993).
6. Corriu, R.J.P. and Leclercq, D.: Recent developments of molecular chemistry of sol-gel processing. Angew. Chem., Int. Ed. Engl. 35, 14201436 (1996).
7. Avnir, D.: Organic chemistry within ceramic matrices: Doped sol-gel materials. Acc. Chem. Res. 28, 328334 (1995).
8. Ogoshi, T. and Chujo, Y.: Organic-inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces 11, 539566 (2005).
9. Avnir, D., Coradin, T., Lev, O., and Livage, J.: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 10131030 (2006).
10. Dunn, B. and Zink, J.I.: Molecules in glass: Probes, ordered assemblies, and functional materials. Acc. Chem. Res. 40, 747755 (2007).
11. Matsui, K.: Entrapment of organic molecules. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 459484.
12. Colombo, P., Mera, G., Riedel, R., and Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 18051837 (2010).
13. Pantano, C.G., Singh, A.K., and Zhang, H.: Silicon oxycarbide glasses. J. Sol-Gel Sci. Technol. 14, 725 (1999).
14. Kamiya, K.: Oxynitride glasses and nitrides. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 171183.
15. Kamiya, K.: Oxycarbide glasses and carbides. In Handbook of Sol-gel Science and Technology: Processing Characterization and Applications, Sakka, S., ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 185201.
16. Studart, A.R., Gonzenbach, U.T., Tervoort, E., and Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 17711789 (2006).
17. Colombo:, P. Engineering porosity in polymer-derived ceramics. J. Eur. Ceram. Soc. 28, 13891395 (2008).
18. Kanamori, K. and Nakanishi, K.: Controlled pore formation in organotrialkoxysilanes-derived hybrids: From aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40, 754770 (2011).
19. Baney, R.H., Itoh, M., Sakakibara, A., and Suzuki, T.: Silsesquioxanes. Chem. Rev. 95, 14091430 (1995).
20. Brook, M.A.: Silicon in Organic, Organometallic, and Polymer Chemistry (John Wiley & Sons, New York, 2000).
21. Volksen, W., Miller, R.D., and Dubois, G.: Low dielectric constant materials. Chem. Rev. 110, 56110 (2010).
22. Kamino, B.A. and Bender, T.P.: The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem. Soc. Rev. 42, 51195130 (2013).
23. Tanaka, K., Ishiguro, F., and Chujo, Y.: POSS ionic liquid. J. Am. Chem. Soc. 132, 1764917651 (2010).
24. Tanaka, K. and Chujo, Y.: Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 22, 17331746 (2012).
25. Chinnam, P.R. and Wunder, S.L.: Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem. Mater. 23, 51115121 (2011).
26. Chu, Z. and Seeger, S.: Superamphiphobic surfaces. Chem. Soc. Rev. 43, 27842798 (2014).
27. Castricum, H.L., Paradis, G.G., Mittelmeijer-Hazeleger, M.C., Kreiter, R., Vente, J.F., and ten Elshof, E.: Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv. Funct. Mater. 21, 23192329 (2011).
28. Xu, R., Wang, J., Kanezashi, M., Yoshioka, T., and Tsuru, T.: Development of robust organosilica membranes for reverse osmosis. Langmuir 27, 1399613999 (2011).
29. Chua, Y.T., Lin, C.X.C., Kleitz, F., Zhao, X.S., and Smart, S.: Nanoporous organosilica membrane for water desalination. Chem. Commun. 49, 45344536 (2013).
30. Kuo, S-W. and Chang, F-C.: POSS related polymer nanocomposites. Prog. Polym. Sci. 36, 16491696 (2011).
31. Lebeau, B. and Innocenzi, P.: Hybrid materials for optics and photonics. Chem. Soc. Rev. 40, 886906 (2011).
32. Fujita, S. and Inagaki, S.: Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem. Mater. 20, 891908 (2008).
33. Lebeau, B., Gaslain, F., Fernandez-Martin, C., and Babonneau, F.: Organically modified ordered mesoporous siliceous solids. In Ordered Porous Solids: Recent Advances and Prospects, Valtchev, V., Mintova, S., and Tsapatsis, M. eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 283308.
34. Mizoshita, N., Tani, T., and Inagaki, S.: Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 40, 789800 (2011).
35. Van Der Voort, P., Esquivel, D., De Canck, E., Goethals, F., Van Driessche, I., and Romero-Salguero, F.J.: Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 42, 39133955 (2013).
36. Nakanishi, K.: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67112 (1997).
37. Nakanishi, K. and Tanaka, N.: Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863873 (2007).
38. Nakanishi, K.: Synthesis concepts and preparation of silica monoliths. In Monolithic Silicas in Separation Science, Unger, K.K., Tanaka, N., and Machtejevas, E. eds.; Wiley-VCH: Weinheim, 2011; pp. 1133.
39. Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J. Mater. Chem. 19, 77167720 (2009).
40. Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chem. Commun. 46, 80378039 (2010).
41. Hasegawa, G., Kanamori, K., Nakanishi, K., and Hanada, T.: A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem. Mater. 22, 25412547 (2010).
42. Shea, K.J. and Loy, D.A.: Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem. Mater. 13, 33063319 (2001).
43. Loy, D.A., Baugher, B.M., Baugher, C.R., Schneider, D.A., and Rahimian, K.: Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem. Mater. 12, 36243632 (2000).
44. Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), Chapter 3.
45. Che, S., Liu, Z., Osuna, T., Sakamoto, K., Terasaki, O., and Tatsumi, T.: Synthesis and characterization of chiral mesoporous silica. Nature 429, 281284 (2004).
46. Shimojima, A. and Kuroda, K.: Designed synthesis of nanostructured siloxane–organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 5363 (2006).
47. Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, CA, 1990), Chapter 5.
48. Cordes, D.B., Lickiss, P.D., and Rataboul, F.: Recent development in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 110, 20812173 (2010).
49. Ng, L.V., Thompson, P., Sanchez, J., Macosko, C.W., and McCormick, A.V.: Formation of cagelike intermediates from nonrandom cyclization during acid-catalyzed sol-gel polymerization of tetraethyl orthosilicate. Macromolecules 28, 64716476 (1995).
50. Mora-Fonz, M.J., Catlow, C.R.A., and Lewis, D.W.: Oligomerization and cyclization processes in the nucleation of microporous silicas. Angew. Chem., Int. Ed. 44, 30823086 (2005).
51. Zhang, C., Babonneau, F., Bonhomme, C., Laine, R.M., Soles, C.L., Hristov, H.A., and Yee, A.F.: Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J. Am. Chem. Soc. 120, 83808391 (1998).
52. Guo, H., Meador, M.A.B., McCorkle, L., Quade, D.J., Guo, J., Hamilton, B., Cakmak, M., and Sprowl, G.: Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3, 546552 (2011).
53. Lin, H., Ou, J., Zhang, Z., Dong, J., and Zou, H.: Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem. Commun. 49, 231233 (2013).
54. Dong, H., Lee, M., Thomas, R.D., Zhang, Z., Reidy, R.F., and Mueller, D.W.: Methyltrimethoxysilane sol-gel polymerization in acidic ethanol solutions studied by 29Si NMR spectroscopy. J. Sol-Gel Sci. Technol. 28, 514 (2003).
55. Dong, H., Zhang, Z., Lee, M-H., Mueller, D.W., and Reidy, R.F.: Sol-gel polycondensation of methyltrimethoxysilane in ethanol studied by 29Si NMR spectroscopy using a two-step acid/base procedure. J. Sol-Gel Sci. Technol. 41, 1117 (2007).
56. Kanamori, K., Kodera, Y., Hayase, G., Nakanishi, K., and Hanada, T.: Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system. J. Colloid Interface Sci. 357, 336344 (2011).
57. Riant, O., Mostefaï, N., and Courmarcel, J.: Recent advances in the asymmetric hydrosilylation of ketones, imines and electrophilic double bonds. Synthesis 18, 29432958 (2004).
58. Morris, R.H.: Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev. 38, 22822291 (2009).
59. Addis, D., Das, S., Junge, K., and Beller, M.: Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation. Angew. Chem., Int. Ed. 50, 60046011 (2011).
60. Moitra, N., Kanamori, K., Shimada, T., Takeda, K., Ikuhara, Y.H., Gao, X., and Nakanishi, K.: Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv. Funct. Mater. 23, 27142722 (2013).
61. Xie, Z., Henderson, E.J., Dag, Ö., Wang, W., Lofgreen, J.E., Kübel, C., Scherer, T., Brodersen, P.M., Gu, Z-Z., and Ozin, G.A.: Periodic mesoporous hydridosilica – Synthesis of an “impossible” material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite. J. Am. Chem. Soc. 133, 50945102 (2011).
62. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548552 (1998).
63. Sorarù, G.D., D’Andrea, G., Campostrini, R., Babonneau, F., and Mariotto, G.: Structural characterization and high-temperature behavior of silicon oxycarbide glasses prepared from sol-gel precursors containing Si-H bonds. J. Am. Ceram. Soc. 78, 379387 (1995).
64. Kleebe, H-J. and Blum, Y.D.: SiOC ceramic with high excess free carbon. J. Eur. Ceram. Soc. 28, 10371042 (2008).
65. Hessel, C.M., Henderson, E.J., and Veinot, J.G.C.: Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 61396146 (2006).
66. Dag, Ö., Henderson, E.J., Wang, W., Lofgreen, J.E., Petrov, S., Brodersen, P.M., and Ozin, G.A.: Spatially confined redox chemistry in periodic mesoporous hydridosilica-nanosilver grown in reducing nanopores. J. Am. Chem. Soc. 133, 1745417462 (2011).
67. Moitra, N., Kanamori, K., Ikuhara, Y.H., Gao, X., Yang, Z., Hasegawa, G., Takeda, K., Shimada, T., and Nakanishi, K.: Reduction on reactive pore surface as a versatile approach to monolith-supported metal alloy nanoparticles and its catalytic applications. J. Mater. Chem. A 2, 1253512544 (2014).
68. Moitra, N., Matsushima, A., Kamei, T., Kanamori, K., Ikuhara, Y.H., Gao, X., Takeda, K., Zhu, Y., Nakanishi, K., and Shimada, T.: A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki-Heck cross-coupling reaction. New J. Chem. 38, 11441149 (2014).
69. Moitra, N., Kamei, T., Kanamori, K., Nakanishi, K., Takeda, K., and Shimada, T.: Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane. Langmuir 29, 1224312253 (2013).
70. Shimada, T., Aoki, K., Shinoda, Y., Nakamura, T., Tokunaga, N., Inagaki, S., and Hayashi, T.: Functionalization on silica gel with allylsilanes. A new method of covalent attachment of organic functional groups on silica gel. J. Am. Chem. Soc. 125, 46884689 (2003).
71. Park, J-W. and Jun, C-H.: Transition-metal-catalyzed immobilization of organic functional groups onto solid supports through vinylsilane coupling reactions. J. Am. Chem. Soc. 132, 72687269 (2010).
72. Dong, H., Brook, M.A., and Brennan, J.D.: A new route to monolithic methylsilsesquioxanes: Gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem. Mater. 17, 28072816 (2005).
73. Kanamori, K., Yonezawa, H., Nakanishi, K., Hirao, K., and Jinnai, H.: Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J. Sep. Sci. 27, 874886 (2004).
74. Nakanishi, K. and Kanamori, K.: Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 15, 37763786 (2005).
75. Kanamori, K., Nakanishi, K., and Hanada, T.: Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. J. Sep. Sci. 29, 24632470 (2006).
76. Kanamori, K., Aizawa, M., Nakanishi, K., and Hanada, T.: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 15891593 (2007).
77. Kanamori, K., Aizawa, M., Nakanishi, K., and Hanada, T.: Elastic organic-inorganic hybrid aerogels and xerogels. J. Sol-Gel Sci. Technol. 48, 172181 (2008).
78. Kanamori, K., Nakanishi, K., and Hanada, T.: J. Ceram. Soc. Jpn. 117, 13331338 (2009).
79. Hayase, G., Kanamori, K., and Nakanishi, K.: Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater. 158, 247252 (2012).
80. Kurahashi, M., Kanamori, K., Takeda, K., Kaji, H., and Nakanishi, K.: Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv. 2, 71667173 (2012).
81. Hüsing, N. and Schubert, U.: Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 37, 2245 (1998).
82. Pierre, A.C. and Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 42434265 (2002).
83. Koebel, M., Rigacci, A., and Achard, P.: Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 63, 315339 (2012).
84. Itoh, H., Tabata, T., Kokitsu, M., Okazaki, N., Imizu, Y., and Tada, A.: Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride. J. Ceram. Soc. Jpn. 101, 10811083 (1993).
85. Gash, A.E., Tillotson, T.M., Satcher, J.H. Jr., Poco, J.F., Hrubesh, L.W., and Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 9991007 (2001).
86. Guo, X., Li, W., Yang, H., Kanamori, K., Zhu, Y., and Nakanishi, K.: Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Sol-Gel Sci. Technol. 67, 406413 (2013).
87. Guo, X., Yu, H., Yang, H., Kanamori, K., Zhu, Y., and Nakanishi, K.: Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Porous Mater. 20, 14771483 (2013).
88. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., and Zhang, L.: Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem., Int. Ed. 51, 20762079 (2012).
89. Worsley, M.A., Kucheyev, S.O., Kuntz, J.D., Olson, T.Y., Han, T.Y.-J., Hamza, A.V., Satcher, J.H. Jr., and Baumann, T.F.: Carbon scaffolds for stiff and highly conductive monolithic oxide-carbon nanotube composites. Chem. Mater. 23, 30543061 (2011).
90. Boday, D.J., Muriithi, B., Stover, R.J., and Loy, D.A.: Polyaniline nanofiber-silica composite aerogels. J. Non-Cryst. Solids 358, 15751580 (2012).
91. Hayase, G., Kanamori, K., Abe, K., Yano, H., Maeno, A., Kaji, H., and Nakanishi, K.: Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability and superhydrophobicity. ACS Appl. Mater. Interfaces (published online. DOI: 10.1021/am501822y).
92. Hayase, G., Kanamori, K., and Nakanishi, K.: New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. J. Mater. Chem. 21, 1707717079 (2011).
93. Hayase, G., Kanamori, K., Hasegawa, G., Maeno, A., Kaji, H., and Nakanishi, K.: A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angew. Chem., Int. Ed. 52, 19861989 (2013).
94. Hayase, G., Kanamori, K., Fukuchi, M., Kaji, H., and Nakanishi, K.: Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem., Int. Ed. 52, 19861989 (2013).
95. Wen, J. and Wilkes, G.L.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 16671681 (1996).
96. Novak, B.M., Auerbach, D., and Verrier, C.: Low-density, mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques. Chem. Mater. 4, 282286 (1994).
97. Kramer, S.J., Rubio-Alonso, F., and Mackenzie, J.D.: Organically modified silicate aerogels, “aeromosils”. Mater. Res. Soc. Symp. Proc. 435, 295300 (1996).
98. Mackenzie, J.D. and Bescher, E.P.: Mechanical properties of organic-inorganic hybrids. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, Sakka, S. ed.; Kluwer Academic Publishers: Dordrecht, 2004, Vol. II; pp. 313326.
99. Frenkel-Mullerad, H. and Avnir, D.: The chemical reactivity of sol-gel materials: Hydrobromination of ormosils. Chem. Mater. 12, 37543759 (2000).
100. Itagaki, A., Nakanishi, K., and Hirao, K.: Phase separation in sol-gel system containing mixture of 3- and 4-functional alkoxysilanes. J. Sol-Gel Sci. Technol. 26, 153156 (2003).
101. Shimojima, A. and Kuroda, K.: Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 5363 (2006).
102. Kuroda, K., Shimojima, A., Kawahara, K., Wakabayashi, R., Tamura, Y., Asakura, Y., and Kitahara, M.: Utilization of alkoxysilyl groups for the creation of structurally controlled siloxane-based nanomaterials. Chem. Mater. 26, 211220 (2014).
103. Hay, J.N., Porter, D., and Raval, H.M.: A versatile route to organically-modified silicas and porous silicas via the non-hydrolytic sol-gel process. J. Mater. Chem. 10, 18111818 (2000).
104. Mutin, P.H. and Vioux, A.: Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure. Chem. Mater. 21, 582596 (2009).
105. Liu, Y., Wang, M., Li, Z., Liu, H., He, P., and Li, J.: Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent. Langmuir 21, 16181622 (2005).
106. Arkhireeva, A., Hay, J.N., and Manzano, M.: Preparation of silsesquioxane particles via a nonhydrolytic sol-gel route. Chem. Mater. 17, 875880 (2005).
107. González-Campo, A., Juárez-Pérez, E.J., Viñas, C., Boury, B., Sillanpää, R., Kivekäs, R., and Núñez, R.: Carboranyl substituted siloxanes and octasilsesquioxanes: Synthesis, characterization, and reactivity. Macromolecules 41, 84588466 (2008).
108. Boday, D.J., Tolbert, S., Keller, M.W., Li, Z., Wertz, J.T., Muriithi, B., and Loy, D.A.: Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions. J. Nanopart. Res. 16, 2313 (2014).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: