Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T18:44:17.120Z Has data issue: false hasContentIssue false

Momentum and Thermal Boundary-layer Thickness in a Stagnation Flow Chemical Vapor Deposition Reactor

Published online by Cambridge University Press:  31 January 2011

David S. Dandy
Affiliation:
Department of Chemical Engineering, Colorado State University, Fort Collins, Colorado 80523–1370
Jungheum Yun
Affiliation:
Department of Chemical Engineering, Colorado State University, Fort Collins, Colorado 80523–1370
Get access

Abstract

Explicit expressions have been derived for momentum and thermal boundary-layer thickness of the laminar, uniform stagnation flows characteristic of highly convective chemical vapor deposition pedestal reactors. Expressions for the velocity and temperature profiles within the boundary layers have also been obtained. The results indicate that, to leading order, the momentum boundary-layer thickness is inversely proportional to the square root of the Reynolds number, while the thermal boundary-layer thickness is inversely proportional to the square root of the Peclet number. Values computed using the approximate expressions are compared directly with numerical solutions of the equations of motion and thermal energy equation, for a specific set of conditions typical of diamond chemical vapor deposition. Because values of the Lewis number do not vary significantly from unity for many different chemical vapor deposition systems, the expression derived here for thermal boundary-layer thickness may be used directly as an approximate concentration boundary-layer thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Celii, F. G. and Butler, J. E., Ann. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
2.Coltrin, M. E. and Dandy, D. S., J. Appl. Phys. 74, 5803 (1993).CrossRefGoogle Scholar
3.Raiche, G. A., Smith, G. P., and Jeffries, J. B., in New Diamond Science and Technology, edited by Messier, R., and Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 251.Google Scholar
4.Goodwin, D. G., Appl. Phys. Lett. 59, 277 (1991).CrossRefGoogle Scholar
5.Koshino, N., Kurihara, K., Kawarada, M., and Sasaki, K., in Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Mater. Res. Soc. Symp. Proc. EA-15, Pittsburgh, PA, 1988), pp. 9598.Google Scholar
6.Matsumoto, S., in Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Mater. Res. Soc. Symp. Proc. EA-15, Pittsburgh, PA, 1988), pp. 119122.Google Scholar
7.Ohtake, N., Tokura, H., Kuriyama, Y., Mashimo, Y., and Yoshikawa, M., Proceedings of the First International Conference on Diamond and Diamond-Like Films, edited by Dismukes, J. P. (The Electrochemical Society, Pennington, NJ, 1989), pp. 93105.Google Scholar
8.Stalder, K. R. and Sharpless, R. L., J. Appl. Phys. 68, 6187 (1990).CrossRefGoogle Scholar
9.Cerio, F. M. and Weimer, W. A., Rev. Sci. Instrum. 63, 2065 (1992).CrossRefGoogle Scholar
10.Woodin, R. L., Bigelow, L. K., and Cann, G. L., Proceedings of Applications of Diamond Films and Related Materials (Auburn, AL, 1991), p. 439.Google Scholar
11.Rongzhi, L., Hailiang, S., Zhen, Y., Sen, T., and Hesun, Z., Proceedings of Applications of Diamond Films and Related Materials (Auburn, AL, 1991), p. 207.Google Scholar
12.Dandy, D. S. and Coltrin, M. E., J. Mater. Res. 10, 1993 (1995).CrossRefGoogle Scholar
13.Yu, B. W. and Girshick, S. L., J. Appl. Phys. 75, 3914 (1994).CrossRefGoogle Scholar
14.Goodwin, D. G. and Gavillet, G. G., J. Appl. Phys. 68, 6393 (1990).CrossRefGoogle Scholar
15.Goodwin, D. G., J. Appl. Phys. 74, 6895 (1993).CrossRefGoogle Scholar
16.Bigelow, L. K., Henderson, N. M., and Woodin, R. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 529.Google Scholar
17.von Karman, T., Z. Angew, Math. Mech. 1, 233 (1921).CrossRefGoogle Scholar
18.Cochran, W. G., Proc. Cambridge Philos. Soc. 30, 365 (1934).CrossRefGoogle Scholar
19.Bödewadt, U. T., Z. Angew. Math. Mech. 20, 241 (1940).CrossRefGoogle Scholar
20.Rogers, M. H. and Lance, G. N., J. Fluid Mech. 7, 617 (1960).CrossRefGoogle Scholar
21.Sparrow, E. M. and Gregg, J. L., J. Heat Transfer 82, 294 (1960).CrossRefGoogle Scholar
22.Evans, G. H. and Greif, R., Numer. Heat Transfer 14, 373 (1988).CrossRefGoogle Scholar
23.Coltrin, M. E., Kee, R. J., and Evans, G. H., J. Electrochem. Soc. 136, 819 (1989).CrossRefGoogle Scholar
24.Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Dandy, D. S., Rupley, F. M., and Grcar, J. F., Sandia National Laboratories Report, SAND 91–8003 (1991).Google Scholar
25.Grcar, J. F., Sandia National Laboratories Report, SAND 91–8230 (1991).Google Scholar
26.Grcar, J. F., Kee, R. J., Smooke, M. D., and Miller, J. A., in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1987), p. 1773.Google Scholar
27.Suzuki, K., Sawabe, A., and Inuzuka, T., Jpn. J. Appl. Phys. 29, 153 (1990).CrossRefGoogle Scholar
28.Zhang, F., Zhang, Y., Yang, Y., Chen, G., and Jiang, X., Appl. Phys. Lett. 57, 1467 (1990).CrossRefGoogle Scholar
29.Kee, R. J., Rupley, F. M., and Miller, J. A., Sandia National Laboratories Report, SAND89-8009B (1993).Google Scholar
30.Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., Sandia National Laboratories Report, SAND 86–8246 (1986).Google Scholar