Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T07:20:58.429Z Has data issue: false hasContentIssue false

Molybdenum effect on Fe–Cr–Ni-alloy elastic constants

Published online by Cambridge University Press:  31 January 2011

H. M. Ledbetter
Affiliation:
Fracture and Deformation Division, Institute for Materials Science and Engineering, National Bureau of Standards, Boulder, Colorado 80303
S. A. Kim
Affiliation:
Fracture and Deformation Division, Institute for Materials Science and Engineering, National Bureau of Standards, Boulder, Colorado 80303
Get access

Abstract

This study involved the ultrasonic measurement of the polycrystalline elastic constants of six face-centered-cubic Fe–Cr–Ni alloys, nominally Fe–19Cr–12Ni (at. %). In these alloys, Mo content ranged up to 2.4 at. %. Molybdenum lowers the Young and shear moduli, and it raises the Poisson ratio. Against expectation (because it increases volume), Mo raises the bulk modulus. Qualitatively, the results show that Ni raises the bulk modulus and Poisson ratio; but Ni lowers the Young and shear moduli. (Nickel decreases the alloy's atomic volume.) The discussion includes existing models based on 3d-electron theory.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gilman, J. J.Aust. J. Phys. 13, 327 (1960).CrossRefGoogle Scholar
2Moelwyn-Hughes, E. A., Physical Chemistry (Pergamon, Oxford, 1961), p. 210.Google Scholar
3Seitz, F., The Modern Theory of Solids (McGraw-Hill, New York, 1940), p. 373.Google Scholar
4Einstein, A., Ann. Phys. 34, 170 (1910-1911).Google Scholar
5Koster, W.Metall. Rev. 6, 1 (1961).Google Scholar
6Ledbetter, H. M.Chevacharoenkul, S., and Davis, R. F.J. Appl. Phys. 60, 1614 (1986).Google Scholar
7Ledbetter, H. M.J. Mater. Sci. 20, 2923 (1985).Google Scholar
8Ledbetter, H.M. and Austin, M. W., Mater. Sci. Eng. 70, 143 (1985).CrossRefGoogle Scholar
9Gilman, J. J.Micromechanics of Flow in Solids (McGraw-Hill, New York, 1969), p. 29.Google Scholar
10Ledbetter, H. M.Frederick, N. V. and Austin, M. W.J. Appl. Phys. 51, 305 (1980).CrossRefGoogle Scholar
11Ledbetter, H. M. and Austin, M. W. National Bureau of Standards, Boulder, Colorado, 1986, unpublished.Google Scholar
12Guinan, M. W. and Beshers, D. N.J. Phys. Chem. Solids 29, 541 (1968).CrossRefGoogle Scholar
13Gschneidner, K. A. and Vineyard, G. H.J. Appl. Phys. 33, 3444 (1962).CrossRefGoogle Scholar
14Pauling, L., The Nature of the Chemical Bond (Cornell U. P., Ithaca, 1969), p. 403.Google Scholar
15Pfeil, P. C. L. AERE Harwell Report No. M/TN11, 1952.Google Scholar
16Altmann, S. L.Coulson, C. A. and Hume-Rothery, W., Proc. R. Soc. London Ser. A240, 145 (1957).Google Scholar
17Bader, F., Ganzhorn, K., and Dehlinger, U., Z. Phys. 137, 190 (1954).CrossRefGoogle Scholar
18Mott, N. F.Adv. Phys. 13, 325 (1964).Google Scholar
19Pauling, L., Phys. Rev. 54, 899 (1938).Google Scholar
20Zener, C., Phys. Rev. 81, 440 (1951); 82, 403 (1951); 83, 299 (1951); 85, 324 (1952).CrossRefGoogle Scholar
21Goodenough, J. B.Phys. Rev. 120, 67 (1960).CrossRefGoogle Scholar
22Herring, C.J. Appl. Phys. 31, 3S (1960).CrossRefGoogle Scholar
23Brooks, H. in Electronic Structure and Alloy Chemistry of the Transition Elements (Interscience, New York, 1963), p. 3.Google Scholar
24Hasegawa, J.Finnis, M. W. and Pettifor, D. G.J. Phys. F15, 19 (1985).Google Scholar
25Ducastelle, F.J. Phys. 31, 1055 (1970).Google Scholar
26Gerlich, D. and Hart, S.J. Appl. Phys. 55, 880 (1984).Google Scholar
27Griineisen, E. in Handbuch der Physik (Springer, Berlin, 1926), Vol. 10, p. 1.Google Scholar
28Fiirth, R.Proc. R. Soc. London Ser. A183, 87 (1944).Google Scholar
29Friedel, J. and Sayers, C. M.J. Phys. Lett. 38, L263 (1977).CrossRefGoogle Scholar
30Friedel, J. and Sayers, C. M.J. Phys. Lett. 39, L59 (1977).Google Scholar
31Shimizu, M.J. Phys. Soc. Jpn. 44, 792 (1978).Google Scholar
32Hausch, G.J. Phys. F7, LI27 (1977).Google Scholar
33Kollar, J. and Solt, G. in Phonons (Flammarion Sciences, Paris, 1971), p. 331.Google Scholar
34Friedel, J. in The Physics of Metals. I. Electrons (Cambridge U. P., London, 1969), p. 363.Google Scholar