Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:04:53.727Z Has data issue: false hasContentIssue false

Modified triazine-based carbon nitride as a high efficiency fluorescence sensor for the label-free detection of Ag+

Published online by Cambridge University Press:  11 November 2020

Liying Hao
Affiliation:
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
Hongjie Song*
Affiliation:
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
Yi Lv
Affiliation:
Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
*
a)Address all correspondence to this author. e-mail: songhj@scu.edu.cn
Get access

Abstract

A triazine-based graphite carbon nitride (tri-C3N4) was successfully prepared using a solid and mild method, and modified through concentrated acid and the hydrothermal method. Interestingly, the modified tri-C3N4 (tri-HC3N4) showed good water stability and excellent fluorescence property. Meanwhile, tri-HC3N4 was successfully used to construct a high-sensitive and selective fluorescence sensor to Ag+. The as-prepared fluorescence sensor showed a fast response and a low detection limit as 0.4046 μM. Moreover, the possible quenching mechanisms were discussed based on the photoinduced electron transfer and the formation of new complex between tri-HC3N4 and Ag+ with the help of the related characterizations. This study does not only provide a new tri-HC3N4 for a high efficiency fluorescence sensor, but also show the potential application in biological sciences.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, S.W., Zeng, M.Y., Xu, J.Z., Wang, X.K., and Hu, W.P.: Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6, 4157 (2014).CrossRefGoogle Scholar
Fan, X., Su, Y., Deng, D., and Lv, Y.: Carbon nitride quantum dot-based chemiluminescenceresonance energy transfer for iodide ion sensing. RSC Adv. 6, 76890 (2016).CrossRefGoogle Scholar
Wang, S., He, F., Dong, P., Tai, Z., Zhao, C., Wang, Y., Liu, F., and Lin, L.: Simultaneous morphology, band structure, and defect optimization of graphitic carbon nitride microsphere by the precursor concentration to boost photocatalytic activity. J. Mater. Res. 33, 3917 (2018).CrossRefGoogle Scholar
Zhang, Y., Pan, K., Qu, Y., Wang, G., Dai, Q., Wang, D., and Qin, W.: Luminescent material with functionalized graphitic carbon nitride as a photovoltaic booster in DSSCs: Enhanced charge separation and transfer. J. Mater. Res. 34, 616 (2019).CrossRefGoogle Scholar
Xiong, M., Rong, Q., Meng, H.M., and Zhang, X.B.: Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens. Bioelectron. 89, 212 (2017).CrossRefGoogle ScholarPubMed
Zhuang, Q., Sun, L., and Ni, Y.: One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 164, 458 (2017).CrossRefGoogle ScholarPubMed
Lee, E.Z., Jun, Y.S., Hong, W.H., Thomas, A., and Jin, M.M.: Cubic mesoporous graphitic carbon (IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem. 49, 9706 (2010).CrossRefGoogle ScholarPubMed
Zhang, H., Huang, Y., Hu, S., Huang, Q., Wei, C., Zhang, W., Kang, L., Huang, Z., and Hao, A.: Fluorescent probes for “off-on” sensitive and selective detection of mercury ions and L-cysteine based on graphitic carbon nitride nanosheets. J. Mater. Chem. C 3, 2093 (2014).CrossRefGoogle Scholar
Han, Y., Zhang, Q., Lin, X., Lu, F., Zhang, Z., and Hu, Z.: Lanthanum loaded graphitic carbon nitride nanosheets for highly sensitive and selective fluorescent detection of iron ions. Sens. Actuat. B 255, 2218 (2018).Google Scholar
Tang, Y., Song, H., Su, Y., and Lv, Y.: Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 85, 11876 (2013).CrossRefGoogle ScholarPubMed
Wang, N., Wang, X., Lv, J.J., Wang, P., Jia, W.H., Bian, W., and Choi, M.F.: A fluorescent probe using phosphorus-doped graphite carbon nitride nanosheets for the detection of silver ions and cell imaging. Can. J. Chem. 98, 408 (2020).CrossRefGoogle Scholar
Zeng, Y., Liu, X., Liu, C., Wang, L., Xia, Y., Zhang, S., Luo, S., and Pei, Y.: Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B 224, 1 (2018).CrossRefGoogle Scholar
Ming, L., Yue, H., Xu, L., and Chen, F.: Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2, 19145 (2014).CrossRefGoogle Scholar
Yang, P., Wang, J., Yue, G., Yang, R., Zhao, P., Yang, L., Zhao, X., and Astruc, D.: Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity. J. Photochem. Photobiol. A 388, 112169 (2020).CrossRefGoogle Scholar
Li, L., Deng, D., Huang, S., Song, H., Xu, K., Zhang, L., and Lv, Y.: UV-assisted cataluminescent sensor for carbon monoxide based on oxygen-functionalized g-C3N4 nanomaterials. Anal. Chem. 90, 9598 (2018).CrossRefGoogle ScholarPubMed
Yan, S.C., Li, Z.S., and Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397 (2009).CrossRefGoogle ScholarPubMed
Ou, H., Zhang, W., Yang, X., Cheng, Q., Liao, G., Xia, H., and Wang, D.: One-pot synthesis of g-C3N4-doped amine-rich porous organic polymer for chlorophenol removal. Environ. Sci. Nano 5, 169 (2017).CrossRefGoogle Scholar
Zhao, L., Lv, W., Hou, J., Li, Y., Duan, J., and Ai, S.: Synthesis of magnetically recyclable g-C3N4/Fe3O4/ZIF-8 nanocomposites for excellent adsorption of malachite green. Microchem. J. 152, 104425 (2020).CrossRefGoogle Scholar
Tahir, M., Cao, C., Mahmood, N., Butt, F.K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z., and Aslam, I.: Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6, 1258 (2014).CrossRefGoogle Scholar
Tian, J.Q., Liu, Q., Arisri, A.M., Al-Youbi, A.O., and Sun, X.P.: Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 85, 5595 (2013).CrossRefGoogle Scholar
Bian, W., Zhang, H., Yu, Q., Shi, M.J., Shuang, S.M., Cai, Z.W., and Choi, M.F.: Detection of Ag+ using graphite carbon nitride nanosheets based on fluorescence quenching. Spectrochim. Acta A 169, 122 (2016).CrossRefGoogle ScholarPubMed
Hatamie, A., Marahel, F., and Sharifat, A.: Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta 176, 518 (2018).CrossRefGoogle ScholarPubMed
Hu, K., Zhong, T., Huang, Y., Chen, Z., and Zhao, S.: Graphitic carbon nitride nanosheet-based multicolour fluorescent nanoprobe for multiplexed analysis of DNA. Microchim. Acta 182, 949 (2015).CrossRefGoogle Scholar
Liao, X., Li, Z., Peng, T., Li, J., Qin, F., and Huang, Z.: Ultra-sensitive fluorescent sensor for intracellular miRNA based on enzyme-free signal amplification with carbon nitride nanosheet as a carrier. Luminescence 32, 1411 (2017).CrossRefGoogle ScholarPubMed
Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., and Yoshikawa, T.: Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6, 570 (2010).10.1016/j.nano.2009.12.002CrossRefGoogle ScholarPubMed
Maitre, S., Jaber, K., Perrot, J.L., Guy, C., and Cambazard, F.: Increased serum and urinary levels of silver during treatment with topical silver sulfadiazine. Ann. Dermatol. Vénér. 129, 217 (2002).Google ScholarPubMed
Zhang, J.F., Zhou, Y., Yoon, J., and Kim, J.S.: Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40, 3416 (2011).CrossRefGoogle Scholar
Natalie, L., Houdt, V., Rob, V.H., Mijnendonckx, K., Jacques, M., and Simon, S: Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 26, 609 (2013).Google Scholar
Lv, Y., Zhu, L., Liu, H., Wu, Y., Chen, Z., Fu, H., and Tian, Z.: Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg²+ with high selectivity and sensitivity. Anal. Chim. Acta 839, 74 (2014).CrossRefGoogle ScholarPubMed
Chan, G.C.Y., Zhu, Z., and Hieftje, G.M.: Operating parameters and observation modes for individual droplet analysis by inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta B. 76, 77 (2012).CrossRefGoogle Scholar
Hu, J., Liu, Z., and Wang, H.: Determination of trace silver in superalloys and steels by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 451, 329 (2002).Google Scholar
Rofouei, M.K., Payehghadr, M., Shamsipur, M., and Ahmadalinezhad, A.: Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption. J. Hazard. Mater. 168, 1184 (2009).CrossRefGoogle ScholarPubMed
Huang, H.Q., Chen, R., Ma, J.L., Yan, L., Zhao, Y.Q., Wang, Y., Zhang, W.J., Fan, J., and Chen, X.F.: Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem. Commun. 50, 15415 (2014).CrossRefGoogle ScholarPubMed
Sirilaksanapong, S., Sukwattanasinitt, M., and Rashatasakhon, P.: 1,3,5-Triphenylbenzene fluorophore as a selective Cu2+ sensor in aqueous media. Chem. Commun. 48, 293 (2011).CrossRefGoogle ScholarPubMed
Lan, G.Y., Huang, C.C., and Chang, H.T.: Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 46, 1257 (2010).CrossRefGoogle ScholarPubMed
Kan, C., Shao, X., Song, F., Xu, J., Zhu, J., and Du, L.: Bioimaging of a fluorescence rhodamine-based probe for reversible detection of Hg (II) and its application in real water environment. Microchem. J. 150, 104142 (2019).CrossRefGoogle Scholar
Nsibande, S.A. and Forbes, P.B.C.: Development of a quantum dot molecularly imprinted polymer sensor for fluorescence detection of atrazine. Luminescence 34, 480 (2019).CrossRefGoogle ScholarPubMed
Liu, L., Mi, Z., Guo, Z., Wang, J., and Feng, F.: A label-free fluorescent sensor based on carbon quantum dots with enhanced sensitive for the determination of myricetin in real samples. Microchem. J. 157, 104956 (2020).CrossRefGoogle Scholar
Zhu, W., Song, H., and Lv, Y.: Triazine-based graphitic carbon nitride: Controllable synthesis and enhanced cataluminescent sensing for formic acid. Anal. Bioanal. Chem. 410, 17266 (2018).CrossRefGoogle ScholarPubMed
Wang, A., Zhang, X., and Zhao, M.: Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale 6, 11157 (2014).CrossRefGoogle Scholar
Hao, L.Y., Song, H.J., Su, Y.Y., and Lv, Y.: A cubic luminescent graphene oxide functionalized Zn-based metal-organic framework composite for fast and highly selective detection of Cu2+ions in aqueous solution. Analyst 139, 764 (2014).CrossRefGoogle Scholar
Algarra, M., Campos, B.B., Radotić, K., Mutavdžić, D., Bandosz, T.J., Jiménez-Jiménez, J., and Rodriguez-Castellon, E.: Silva, luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties. J. Mater. Chem. A 2, 8342 (2014).CrossRefGoogle Scholar
Ma, J., Guo, B., Cao, X., Lin, Y., Yao, B., Li, F., Wen, W., and Huang, L.: One-pot fabrication of hollow cross-linked fluorescent carbon nitride nanoparticles and their application in the detection of mercuric ions. Talanta 143, 205 (2015).CrossRefGoogle ScholarPubMed
Kaushik, V.K.: XPS core level spectra and Auger parameters for some silver compounds. J. Electron. Spectrosc. Relat. Phenom. 56, 273 (1991).CrossRefGoogle Scholar
Boronin, A.I., Koscheev, S.V., Kalinkina, O.V., and Zhidomirov, G.M.: Oxygen states during thermal decomposition of Ag2O: XPS and UPS study. Reac. Kinet. Catal. Lett. 63, 291 (1998).CrossRefGoogle Scholar
Gerenser, L.J.: Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment. J. Vac. Sci. Technol. A 8, 3682 (1990).CrossRefGoogle Scholar
Gai, K., Kang, M.P., Huang, Q., Zheng, S.N., Zhang, L., Zhang, C.L., and Hao, L.Y.: A novel, green, and biocompatible grapheme-based carbonaceous material for immobilization of cytochrome c. J. Mater. Res. 33, 4270 (2018).CrossRefGoogle Scholar
Supplementary material: File

Burtscher et al. supplementary material

Burtscher et al. supplementary material

Download Burtscher et al. supplementary material(File)
File 12.4 MB