Skip to main content Accessibility help

Microwave-assisted synthesis of calcium phosphate nanowhiskers

  • Sahil Jalota (a1), A. Cuneyt Tas (a1) and Sarit B. Bhaduri (a1)


Calcium phosphate [single-phase hydroxyapatite (HA), single-phase tricalcium phosphate (TCP), and biphasic HA-TCP] nanowhiskers and/or powders were produced by using a novel microwave-assisted “combustion synthesis (auto ignition)/molten salt synthesis” hybrid route. This work is an example of our “synergistic processing” philosophy combining these three technologies while taking advantage of their useful aspects. Aqueous solutions containing NaNO3, Ca(NO3)2·4H2O and KH2PO4 (with or without urea) were irradiated in a household microwave oven for 5 min at 600 watts of power. The as-synthesized precursors were then simply stirred in water at room temperature for 1 h to obtain the nanowhiskers or powders of the desired calcium phosphate bioceramics.


Corresponding author

a)Address all correspondence to this author.e-mail:


Hide All
1Hench, L.L.: Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1478 (1991).
2Jarcho, M., Bolen, C.H., Thomas, M.B., Bobock, J., Kay, J.F. and Doremus, R.H.: Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11, 2027 (1976).
3Asada, M., Miura, Y., Osaka, A., Oukami, K. and Nakamura, S.: Hydroxyapatite crystal growth on calcium hydroxyapatite ceramics. J. Mater. Sci. 23, 3202 (1988).
4Klein, C.P.A.T., de Blieck-Hogerworst, J.M.A., Wolke, J.G.C. and de Groot, K.: Studies of solubility of different calcium phosphate ceramic particles in vitro. Biomaterials 11, 509 (1990).
5Ebrahimpour, E., Johnson, M., Richardson, C.F. and Nancollas, G.H.: The characterization of HA precipitation. J. Colloid Interf. Sci. 159, 158 (1993).
6Tas, A.C., Korkusuz, F., Timucin, M. and Akkas, N.: An investigation of the chemical synthesis and high-temperature sintering behavior of calcium HA and TCP bioceramics. J. Mater. Sci. Mater. Med. 8,91 (1997).
7Bayraktar, D. and Tas, A.C.: Formation of Hydroxyapatite Precursors at 37 °C in urea- and enzyme urease-containing body fluids. J. Mater. Sci. Lett. 20, 401 (2001).
8Kivrak, N. and Tas, A.C.: Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 81, 2245 (1998).
9Daculsi, G., Laboux, O., Malard, O. and Weiss, P.: Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med ., 14, 195 (2003).
10Kiminami, R.H.G.A., Morelli, M.R., Folz, D.C. and Clark, D.E.: Microwave synthesis of alumina powders. Am. Ceram. Soc. Bull. 79, 63 (2000).
11Kiminami, R.H.G.A., Morelli, M.R., Folz, D.C. and Clark, D.E.: Synthesis of Al2O3/SiC powders using microwave-induced combustion reaction. Mater. Trans. 42, 1661 (2001).
12Kingsley, J.J. and Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427 (1988).
13Bhaduri, S., Bhaduri, S.B. and Prisbrey, K.A.: Auto ignition synthesis of nanocrystalline of MgAl2O4 and related nanocomposites. J. Mater. Res. 14, 3571 (1999).
14Bhaduri, S.B., Bhaduri, S., Huang, J.G. and Tinga, W.R.: Auto ignition synthesis and microwave sintering of CaO-stabilized nano ZrO2. Ceram. Eng. Sci. Proc. 20, 227 (1999).
15Tas, A.C.: Combustion synthesis of calcium phosphate bioceramic powders. J. Eur. Ceram. Soc. 20, 2389 (2000).
16Pechini, M.P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent No. 3 330 697, 1967
17Pena, J. and Vallet-Regi, M.: Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J. Eur. Ceram. Soc. 23, 1687 (2003).
18Arendt, R.H.: The molten salt synthesis of single magnetic domain BaFe12O19 and SrFe12O19 crystals. J. Solid State Chem. 8, 339 (1973).
19Tas, A.C.: Molten salt synthesis of calcium hydroxyapatite whiskers. J. Am. Ceram. Soc. 84, 295 (2001).
20Tas, A.C.: X-ray diffraction data for flux-grown calcium hydroxyapatite whiskers. Powder Diffr. 16, 102 (2001).
21Varma, H., Warrier, K.G. and Damodaran, A.D.: Metal nitrate-urea decomposition route for Y–Ba–Cu–O powder. J. Am. Ceram. Soc. 73, 3103 (1990).
22 Handbook of Chemistry and Physics , 72nd edition, edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1992), pp. 499
23Afanasiev, P. and Geantet, C.: Effect of alkali metal cations on the properties of zirconia prepared in molten nitrates. Mater. Chem. Phys. 41, 18 (1995).
24Saadi, L., Moussa, R., Samdi, A. and Mosset, A.: Synthesis of mullite precursors in molten salts. Influence of the molten alkali nitrate and additives. J. Eur. Ceram. Soc. 19, 517 (1999).
25Bondioli, F., Corradi, A.B., Leonelli, C. and Manfredini, T.: Nanosized CeO2 powders obtained by flux method. Mater. Res. Bull. 34, 2159 (1999).
26Vayssieres, L., Beermann, N., Lindquist, S.E. and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides. Chem. Mater. 13, 233 (2001).
27Beleke, A.B., Mizuhata, M. and Deki, S.: Diffuse reflectance FTIR spectroscopic study of interactions of α–Al2O3/molten NaNO3 coexisting systems. Phys. Chem. Chem. Phys. 5, 2089 (2003).
28Park, M., Choi, C.L., Lim, W.T., Kim, M.C., Choi, J. and Heo, N.H.: Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater. 37, 81 (2000).
29Afanasiev, P.: Molten salt synthesis of nitrate-exchanged magnesium and aluminum sodalites. Chem. Mater. 13, 459 (2001).
30Yoon, K.H., Cho, Y.S. and Kang, D.H.: Review: Molten salt synthesis of lead-based relaxors. J. Mater. Sci. 33, 2977 (1998).
31Knaack, D., Goad, M.E.P., Aiolova, M., Rey, C., Tofighi, A., Chakravarthy, P., and Lee, D.D., Resorbable calcium phosphate bone substitute, J. Biomed. Mater. Res. 43 399 (Appl. Biomater, 1998)
32Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37 °C in synthetic body fluids. Biomaterials. 21, 1429 (2000).
33Rogers, K.D. and Daniels, P.: An x-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23, 2577 (2002).
34Yin, H.B., Yamamoto, T., Wada, Y. and Yanagida, S.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 83, 66 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed