Skip to main content Accessibility help

Microwave dielectric properties of (1 − x)Cu3Nb2O8−xZn3Nb2O8 ceramics

  • Dong-Wan Kim (a1), In-Tae Kim (a1), Byungwoo Park (a1), Kug Sun Hong (a1) and Jong-Hee Kim (a2)...


The sintering behavior and microwave dielectric properties of (1 − x)Cu3Nb2O8xZn3Nb2O8 have been investigated using dilatometry, x-ray diffraction, and a network analyzer. It was found that (1 − x)Cu3Nb2O8−xZn3Nb2O8 ceramics have a much lower melting temperature than Zn3Nb2O8 ceramics without Cu3Nb2O8 additives. Samples sintered at 900 °C for 2 h exhibited densities >97% of the theoretical density. Cu3Nb2O8 acts as a sintering aid. Two phase regions were identified with increasing Zn3Nb2O8 contents. A Cu3Nb2O8−Zn3Nb2O8 solid solution exists from 0 < x < 0.5 while a mixture of Cu3Nb2O8 and Zn3Nb2O8 exists from 0.5 < x < 1. The microwave dielectric properties correlated to the crystal structure. In Cu3Nb2O8−Zn3Nb2O8 solid solution region, the variation of dielectric properties could be explained by the structure distortion of Cu3Nb2O8 due to electronic anisotropies of Cu2+ cations.


Corresponding author

a)Address all correspondence to this author. e-mial:


Hide All
1.Langbein, H. and Wolki, G., Thermochimica Acta 264, 67 (1995).
2.Wahlstrom, E. and Marinder, B.O., Inorg. Nucl. Chem. Lett. 13, 559 (1977).
3.Isobe, M., Marumo, F., Iwai, S., and Kondo, Y., Bull. Tokyo Inst. Tech. 120, 1 (1974).
4.Brusset, H., Mahe, R., and Kyi, U.A., Mater. Res. Bull. 7, 1061 (1972).
5.Yamaguchi, O., Maruyama, N., and Hirota, K., J. Mater. Sci. Lett. 10, 445 (1991).
6.Drew, M.G.B., Hobson, R.J., and Padayatchy, V.T., J. Mater. Chem. 5, 1779 (1995).
7.Takada, T., Wang, S.F., Yoshikawa, S., Jang, S.J., and Newnham, R.E., J. Am. Ceram. Soc. 77, 1909 (1994).
8.Lee, C.C. and Lin, P., Jpn. J. Appl. Phys. 37, 6048 (1998).
9.Yang, C.F., Jpn. J. Appl. Phys. 38, 3576 (1999).
10.Hay, D., CELSIZ, package for unit cell refinement of powder X-ray data, CSIRO Division of Materials Science and Technology, Clayton, Australia.
11.Kaifez, D. and Guillion, P., Dielectric Resonators; (Artech House, Norwood, MA, 1986), pp. 327376.
12.Hakki, B.W. and Coleman, P.D., IRE Tans. Microwave Theory & Technol. 8, 402 (1960).
13.Nishikawa, T., Wakino, K., Tamura, H., Tanaka, H., and Ishikawa, Y., IEEE MTT-S Digest 3, 277 (1987).
14.Tummala, R.R., J. Am. Ceram. Soc. 74, 895 (1991).
15.Knickerbocker, S.H., Kumar, A.H., and Herron, L.W., Am. Ceram. Soc. Bull. 72, 90 (1993).
16.Singer, G.M. and Tomozawa, M., Phys. Chem. Glasses 30 (3), 102 (1989).
17.Chang, C.R. and Jean, J.H., J. Am. Ceram. Soc. 82, 1725 (1999).
18.Dayal, R.R., J. Less-Common Met. 26, 381 (1972).
19.Brown, I.D. and Shannon, R.D., Acta. Cryst. A29, 266 (1973).
20.Brown, I.D., Acta. Cryst. B48, 553 (1992).
21.Bosman, A.J. and Havinga, E.E., Phys. Rev. 129, 1593 (1960).
22.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).
23.Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Mater. Res. Bull. 32, 847 (1997).
24.Wakino, K. and Tamura, H., Ceram. Trans. 8, 305 (1990).
25.Lee, H.J., Hong, K.S., and Kim, I.T., J. Mater. Res. 12, 1437 (1997).
26.Kim, D.W., Kim, D.Y., and Hong, K.S., J. Mater. Res. 15, 1331 (2000).
27.Lee, H.J., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 36, L1318 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed