Skip to main content Accessibility help
×
Home

Microstructures of La1−xAx(A = Ca or Sr)MnO3−δ thin films by liquid-delivery metalorganic chemical vapor deposition

  • Y. Xin (a1), K. Han (a1), N. Mateeva (a2), H. Garmestani (a3), P. N. Kalu (a4) and K-H. Dahmen (a2)...

Abstract

The microstructure of La1–xAx(A = Ca or Sr)MnO3–δ thin films grown by liquid-delivery metalorganic chemical vapor deposition on (001) MgO and (110)pseudo-cubic LaAlO3 were studied by transmission electron microscopy. The La1–xCaxMnO3–δ thin film on large lattice mismatched MgO exhibited very defective microstructures and consisted of two typical regions. The first region was close to the film–substrate interface and had an epitaxial relationship to the substrate with many differently oriented domains nucleated on the substrate surface. The second region consisted of columnar grains with some degree of texture. In contrast, the smaller lattice-mismatched La1–xSrxMnO3–δ/(110)pseudo-cubic LaAlO3 film had good crystalline quality with highly oriented columnar grains but exhibited complicated dislocation structures. Apart from the misfit dislocations formed at the film–substrate interface, two types of anomalous dislocations with limited contribution to relieving misfit stresses were also observed. One type of dislocation had extra planes in the film and some climbed into the substrate. These dislocations were considered to form from dislocation loops during nucleation of the film. The other type of dislocations had extra planes parallel to the film–substrate interface and glided into the substrate side resulting in a 2° tilt of the film with respect to the substrate. The complicated dislocation configurations present in the sample were related to the complex strain field in the film. The relative strains along the interface measured in the film were heterogeneous. The variations of the strains in the film were related to the local Curie temperature changes and second-order phase transitions of the film.

Copyright

References

Hide All
1.Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993);
Jin, S., Tiefel, T.H., Mccormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994), and references therein.
2.Vlakhov, E.S., Chakalov, R.A., Chakalova, R.I., Nenkov, K.A., Dorr, K., Handstein, A., and Muller, K.H., J. Appl. Phys. 83, 2152 (1998).
3.Li, K.B., Qi, Z.Z., Li, Z.J., Zhu, J.S., and Zhang, Y.H., Thin Solid Films 304, 386 (1997).
4.Li, Y.Q., Zhang, J., Pombrik, S., Dimascio, S., Stevens, W., Yan, Y.F., and Ong, N.P., J. Mater. Res. 10, 2166 (1995).
5.Dahmen, K-H. and Carris, M.W., J. Alloys Compd. 251, 270 (1997).
6.Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., and Geballe, T.H., Phys. Rev. B 53, 14434 (1996).
7.Thomas, K.A., de Silva, P.S.I.P.N., Cohen, L.F., Hossain, A., Rajeswari, M., Venkatesan, T., Hiskes, R., and MacManus-Driscoll, J.L., J. Appl. Phys. 84, 3939 (1998).
8.Manabe, T., Fujimoto, T., Yamaguchi, I., Kondo, W., Kojima, I., Mizuta, S., and Kumagai, T., Thin Solid Films 323, 99 (1998).
9.Jin, S., Tiefel, T.H., Mccormack, M., Obryan, H.M., Chen, L.H., Ramesh, R., and Schurig, D., Appl. Phys. Lett. 67, 557 (1995).
10.Yeh, N-C., Fu, C-C., Wei, J.Y.T., Vasquez, R.P., Huynh, J., Maurer, S.M., Beach, G., and Beam, D.A., J. Appl. Phys. 81, 5499 (1997).
11.Aarts, J., Freisem, S., Hendrikx, R., and Zandbergen, H.W., Appl. Phys. Lett. 72, 2975 (1998).
12.Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., and Tsui, F., J. Appl. Phys. 85, 4794 (1999).
13.Gommert, E., Cerva, H., Wecker, J., and Samwer, K., J. Appl. Phys. 85, 5417 (1999).
14.Razavi, F.S., Gross, G., Habermeier, H-U., Lebedev, O., Amelinckx, S., Van Tendeloo, G., and Vigliante, A., Appl. Phys. Lett. 76, 15 (2000).
15.Nath, T.K., Rao, R.A., Lavric, D., Eom, C.B., Wu, L., and Tsui, F., Appl. Phys. Lett. 74, 1615 (1999).
16.Gillman, E.S., Li, M., and Dhmen, K-H., J. Appl. Phys. 84, 6217 (1998).
17.Ju, H.L., Krishnan, K.M., and Lederman, D., J. Appl. Phys. 83, 7073 (1998).
18.Millis, A.J., Darling, T., and Migliori, A., J. Appl. Phys. 83, 1588 (1998).
19.Arita, M., Sasaki, A., Hamada, K., Okada, A., Hayakawa, J., Asano, H., Matsui, M., and Takahashi, H., J. Electron Microsc. 48, 381 (1999).
20.Zandbergen, H.W., Jansen, J., Freisem, S., Nojima, T., and Aarts, J., Philos. Mag. A 80, 337 (2000).
21.Van Tendeloo, G., Lebedev, O.I., and Amelinckx, S., J. Magn. Magn. Mater. 211, 73 (2000).
22.Zandbergen, H.W. and Jansen, J., Ultramicroscopy 80, 59 (1999).
23.Pinsard, L., Rodriguez-Carvajal, J., and Revcolevschi, A., J. Alloys Compd 262, 152 (1997).
24.Lehnert, H., Boysen, H., Dreier, P., and Yu, Y., Z. Kristallogr 215, 145 (2000).
25.Geller, S. and Bala, V.B., Acta. Crystallogr. 9, 1019 (1956).
26.Chou, C.T., Preston, A.R., and Steeds, J.W., Philos. Mag. A 65, 863 (1992).

Microstructures of La1−xAx(A = Ca or Sr)MnO3−δ thin films by liquid-delivery metalorganic chemical vapor deposition

  • Y. Xin (a1), K. Han (a1), N. Mateeva (a2), H. Garmestani (a3), P. N. Kalu (a4) and K-H. Dahmen (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed