Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T08:07:45.440Z Has data issue: false hasContentIssue false

Microstructures of La1−xAx(A = Ca or Sr)MnO3−δ thin films by liquid-delivery metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Y. Xin
Affiliation:
Magnet Science and Technology, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
K. Han
Affiliation:
Magnet Science and Technology, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
N. Mateeva
Affiliation:
Department of Chemistry and MARTECH, Florida State University, Tallahassee, Florida 32306
H. Garmestani
Affiliation:
Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32306
P. N. Kalu
Affiliation:
Magnet Science and Technology, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, and Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32306
K-H. Dahmen
Affiliation:
Department of Chemistry and MARTECH, Florida State University, Tallahassee, Florida 32306
Get access

Abstract

The microstructure of La1–xAx(A = Ca or Sr)MnO3–δ thin films grown by liquid-delivery metalorganic chemical vapor deposition on (001) MgO and (110)pseudo-cubic LaAlO3 were studied by transmission electron microscopy. The La1–xCaxMnO3–δ thin film on large lattice mismatched MgO exhibited very defective microstructures and consisted of two typical regions. The first region was close to the film–substrate interface and had an epitaxial relationship to the substrate with many differently oriented domains nucleated on the substrate surface. The second region consisted of columnar grains with some degree of texture. In contrast, the smaller lattice-mismatched La1–xSrxMnO3–δ/(110)pseudo-cubic LaAlO3 film had good crystalline quality with highly oriented columnar grains but exhibited complicated dislocation structures. Apart from the misfit dislocations formed at the film–substrate interface, two types of anomalous dislocations with limited contribution to relieving misfit stresses were also observed. One type of dislocation had extra planes in the film and some climbed into the substrate. These dislocations were considered to form from dislocation loops during nucleation of the film. The other type of dislocations had extra planes parallel to the film–substrate interface and glided into the substrate side resulting in a 2° tilt of the film with respect to the substrate. The complicated dislocation configurations present in the sample were related to the complex strain field in the film. The relative strains along the interface measured in the film were heterogeneous. The variations of the strains in the film were related to the local Curie temperature changes and second-order phase transitions of the film.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993);CrossRefGoogle Scholar
Jin, S., Tiefel, T.H., Mccormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994), and references therein.CrossRefGoogle Scholar
2.Vlakhov, E.S., Chakalov, R.A., Chakalova, R.I., Nenkov, K.A., Dorr, K., Handstein, A., and Muller, K.H., J. Appl. Phys. 83, 2152 (1998).CrossRefGoogle Scholar
3.Li, K.B., Qi, Z.Z., Li, Z.J., Zhu, J.S., and Zhang, Y.H., Thin Solid Films 304, 386 (1997).CrossRefGoogle Scholar
4.Li, Y.Q., Zhang, J., Pombrik, S., Dimascio, S., Stevens, W., Yan, Y.F., and Ong, N.P., J. Mater. Res. 10, 2166 (1995).CrossRefGoogle Scholar
5.Dahmen, K-H. and Carris, M.W., J. Alloys Compd. 251, 270 (1997).CrossRefGoogle Scholar
6.Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., and Geballe, T.H., Phys. Rev. B 53, 14434 (1996).CrossRefGoogle Scholar
7.Thomas, K.A., de Silva, P.S.I.P.N., Cohen, L.F., Hossain, A., Rajeswari, M., Venkatesan, T., Hiskes, R., and MacManus-Driscoll, J.L., J. Appl. Phys. 84, 3939 (1998).CrossRefGoogle Scholar
8.Manabe, T., Fujimoto, T., Yamaguchi, I., Kondo, W., Kojima, I., Mizuta, S., and Kumagai, T., Thin Solid Films 323, 99 (1998).CrossRefGoogle Scholar
9.Jin, S., Tiefel, T.H., Mccormack, M., Obryan, H.M., Chen, L.H., Ramesh, R., and Schurig, D., Appl. Phys. Lett. 67, 557 (1995).CrossRefGoogle Scholar
10.Yeh, N-C., Fu, C-C., Wei, J.Y.T., Vasquez, R.P., Huynh, J., Maurer, S.M., Beach, G., and Beam, D.A., J. Appl. Phys. 81, 5499 (1997).CrossRefGoogle Scholar
11.Aarts, J., Freisem, S., Hendrikx, R., and Zandbergen, H.W., Appl. Phys. Lett. 72, 2975 (1998).CrossRefGoogle Scholar
12.Rao, R.A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., and Tsui, F., J. Appl. Phys. 85, 4794 (1999).CrossRefGoogle Scholar
13.Gommert, E., Cerva, H., Wecker, J., and Samwer, K., J. Appl. Phys. 85, 5417 (1999).CrossRefGoogle Scholar
14.Razavi, F.S., Gross, G., Habermeier, H-U., Lebedev, O., Amelinckx, S., Van Tendeloo, G., and Vigliante, A., Appl. Phys. Lett. 76, 15 (2000).CrossRefGoogle Scholar
15.Nath, T.K., Rao, R.A., Lavric, D., Eom, C.B., Wu, L., and Tsui, F., Appl. Phys. Lett. 74, 1615 (1999).CrossRefGoogle Scholar
16.Gillman, E.S., Li, M., and Dhmen, K-H., J. Appl. Phys. 84, 6217 (1998).CrossRefGoogle Scholar
17.Ju, H.L., Krishnan, K.M., and Lederman, D., J. Appl. Phys. 83, 7073 (1998).CrossRefGoogle Scholar
18.Millis, A.J., Darling, T., and Migliori, A., J. Appl. Phys. 83, 1588 (1998).CrossRefGoogle Scholar
19.Arita, M., Sasaki, A., Hamada, K., Okada, A., Hayakawa, J., Asano, H., Matsui, M., and Takahashi, H., J. Electron Microsc. 48, 381 (1999).CrossRefGoogle Scholar
20.Zandbergen, H.W., Jansen, J., Freisem, S., Nojima, T., and Aarts, J., Philos. Mag. A 80, 337 (2000).CrossRefGoogle Scholar
21.Van Tendeloo, G., Lebedev, O.I., and Amelinckx, S., J. Magn. Magn. Mater. 211, 73 (2000).CrossRefGoogle Scholar
22.Zandbergen, H.W. and Jansen, J., Ultramicroscopy 80, 59 (1999).CrossRefGoogle Scholar
23.Pinsard, L., Rodriguez-Carvajal, J., and Revcolevschi, A., J. Alloys Compd 262, 152 (1997).CrossRefGoogle Scholar
24.Lehnert, H., Boysen, H., Dreier, P., and Yu, Y., Z. Kristallogr 215, 145 (2000).CrossRefGoogle Scholar
25.Geller, S. and Bala, V.B., Acta. Crystallogr. 9, 1019 (1956).CrossRefGoogle Scholar
26.Chou, C.T., Preston, A.R., and Steeds, J.W., Philos. Mag. A 65, 863 (1992).CrossRefGoogle Scholar