Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T01:12:55.969Z Has data issue: false hasContentIssue false

Microstructure study of Y–Ba–Cu oxide superconducting thin films

Published online by Cambridge University Press:  31 January 2011

A. H. Hamdi
Affiliation:
Electrical and Electronics Engineering Department, GM Research Laboratories, Warren, Michigan 48090-9055
J. V. Mantese
Affiliation:
Electrical and Electronics Engineering Department, GM Research Laboratories, Warren, Michigan 48090-9055
A. L. Micheli
Affiliation:
Electrical and Electronics Engineering Department, GM Research Laboratories, Warren, Michigan 48090-9055
R. A. Waldo
Affiliation:
Analytical Chemistry Department, GM Research Laboratories, Warren, Michigan 48090-9055
Y. L. Chen
Affiliation:
Analytical Chemistry Department, GM Research Laboratories, Warren, Michigan 48090-9055
C. A. Wong
Affiliation:
Analytical Chemistry Department, GM Research Laboratories, Warren, Michigan 48090-9055
M. M. Karmarkar
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202
K. R. Padmanabhan
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202
Get access

Abstract

Grain growth as a function of annealing temperature in Y–Ba–Cu oxide superconducting thin films is presented. Effects of excess Cu on the temperature dependence of the resistance, grain growth, and sheet resistivity are discussed. This is the first systematic study of the microstructure of thin films formed by the nonvacuum technique of metallo organic deposition. The Cu-rich films show an anomalous behavior in the resistivity at 220–240 K. The presence of excess Cu was found to enhance grain growth for films annealed below the melting point of the 1–2–3 phase. Films deposited on 〈100〉 SrTiO3 and rapid thermal annealed showed partial epitaxial growth of the 1–2–3 phase. The analytical techniques of Rutherford backscattering spectrometry, ion channeling, x-ray diffraction, scanning electron microscopy, electron microprobe analysis, sheet resistivity, and temperature versus resistance measurements have been used in this study.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Mueller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Cava, R. J., Batlogg, B., Dover, R. B. van, Murphy, D. W., Sunshine, S., Siergrist, T., Remeika, J. P., Reitman, E. A., Zahurak, S., and Spinosa, G. B., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
4Laibowitz, R. B., Koch, R. H., Chaudhari, P., and Gambino, R. J., Phys. Rev. B 35, 8821 (1987).CrossRefGoogle Scholar
5Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 52, 619 (1987).CrossRefGoogle Scholar
6Hamdi, A. H., Mantese, J. V., Micheli, A. L., Laugal, R. C. O., Dungan, D. F., Zhang, Z. H., and Padmanabhan, K. R., Appl. Phys. Lett. 51, 2152 (1987).CrossRefGoogle Scholar
7Mantese, J. V., Hamdi, A. H., Micheli, A. L., Chen, Y. L., Wong, C. A., Johnson, J. L., Karmarkar, M. M. and Padmanabhan, K. R., Appl. Phys. Lett. 52, 1631 (1988).CrossRefGoogle Scholar
8Chaudhari, P., Collins, R. T., Freitas, P., Gambino, R. J., Kirtley, J. R., Koch, R. H., Laibowitz, R. B., LeOues, F. K., McGuire, T. R., Penney, T., Schlesinger, Z., Segmuller, A. P., Foner, S., and McNiff, E. J. Jr , Phys. Rev. B 36, 8903 (1987).CrossRefGoogle Scholar
9Lathrop, D. K., Russeek, S. E., and Buhrman, R. A., Appl. Phys. Lett. 51, 1554 (1987).CrossRefGoogle Scholar
10Chu, W. K., Mayer, J. W., and Nicolet, M.-A., Backscattering Spectrometry (Academic, New York, 1978).CrossRefGoogle Scholar
11Stoffel, N. G., Morris, P. A., Bonner, W. A., and Wilkens, B. J., Phys. Rev. B 37, 2297 (1988). For detailed interpretation of channeling effect see Ref. 10.CrossRefGoogle Scholar
12This phase is similar to that which was identified by Eaglesham, D. J., Humphreys, C. J., Alford, N. McN., Clegg, W. J., Harmer, M. A., and Birchall, J. D., Appl. Phys. Lett. 51, 457 (1987).CrossRefGoogle Scholar
13Pande, C. S., Osofsky, M. S., Singh, A. K., Richards, L. E., Ashoka, R., Letourneau, V., and Wolf, S. A., Phys. Rev. B 37, 1594 (1988).CrossRefGoogle Scholar
14Char, K., Lee, M., Barton, R. W., Marshall, A. F., Bosovic, I., Hammond, R. H., Beasley, M. K., Geballe, T. H., and Kapitulnik, A., Phys. Rev. B 38, 834 (1988).CrossRefGoogle Scholar