Skip to main content Accessibility help

Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C

  • Xiao Chen (a1), Yanwei Sui (a1), Jiqiu Qi (a1), Yezeng He (a1), Fuxiang Wei (a1), Qingkun Meng (a1) and Zhi Sun (a1)...


Al1.3CrFeNi eutectic high entropy alloy was designed and prepared by arc-melting to investigate the microstructure and oxidation behaviors at 1000 °C. The XRD pattern shows that this alloy had a double bcc/B2 structure. SEM images indicates that the microstructure of the alloy is composed of two precipitates of [Cr, Fe] solid solution and NiAl intermetallic, which form the typical eutectic structure. To explore the thermal application of Al1.3CrFeNi alloy, the oxidation behavior of Al1.3CrFeNi alloy at 1000 °C was investigated. From XRD and SEM results, it could be concluded that Al2O3 and Cr2O3 were the predominant oxides during the oxidation process. In addition, spinel like FeCr2O4 was also observed in the oxide scale. According to the analysis of oxide precipitates, the whole process of oxides’ formation was discussed and a simplified oxidation dynamic model of Al1.3CrFeNi alloy at 1000 °C was obtained. This could promote the development of thermal applications in multi-component alloys field.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Jürgen Eckert



Hide All
1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2014).
3. Yeh, J.W.: Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 31, 633 (2006).
4. Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).
5. Guo, S., Ng, C., and Liu, C.T.: Anomalous solidification microstructures in Co-free Al x CrCuFeNi2 high-entropy alloy. J. Alloys Compd. 557, 77 (2013).
6. Jones, N.G., Izzo, R., Mignanelli, P.M., Christofidou, K.A., and Stone, H.J.: Phase evolution in an Al0.5CrFeCoNiCu high entropy alloy. Intermetallics 71, 43 (2016).
7. Chen, J., Niu, P.Y., Liu, Y.Z., Lu, Y.K., Wang, X.H., Peng, Y.L., and Liu, J.N.: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94, 39 (2016).
8. He, F., Wang, Z.J., Niu, S.Z., Wu, Q.F., Li, J.J., Wang, J.C., Liu, C.T., and Dang, Y.Y.: Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 667, 53 (2016).
9. Dong, Y., Gao, X.X., Lu, Y.P., Wang, T.M., and Li, T.J.: A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Mater. Lett. 102, 187 (2016).
10. He, J.Y., Wang, H.L., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).
11. Stepanov, N.D., Yurchenko, N.Y., Sokolovsky, V.S., Tikhonovsky, M.A., and Salishchev, G.A.: An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 161, 136 (2015).
12. Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).
13. Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 1904 (2007).
14. Fu, Z.Q., Chen, W.P., Wen, H.M., Zhang, D.L., Chen, Z., Zheng, B.L., Zhou, Y.Z., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).
15. Rao, J.C., Ocelik, V., Vainchtein, D., Tang, Z., Liaw, P.K., and De Hosson, J.Th.M.: The fcc–bcc crystallographic orientation relationship in Al x CoCrFeNi high-entropy alloys. Mater. Lett. 176, 29 (2016).
16. Lee, C.F. and Shun, T.T.: Effect of Fe content on microstructure and mechanical properties of Al0.5CoCrFe x NiTi0.5 high-entropy alloys. Mater. Charact. 114, 179 (2016).
17. Wang, Q., Ma, Y., Jiang, B.B., Li, X.N., Shi, Y., Dong, C., and Liaw, P.K.: A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr. Mater. 120, 85 (2016).
18. He, F., Wang, Z.J., Niu, S.Z., Wu, Q.F., Li, J.J., Wang, J.C., Liu, C.T., and Dang, Y.Y.: Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 667, 53 (2016).
19. Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.j.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep 4, 6200 (2014).
20. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
21. Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).
22. Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
23. Li, J.S., Jia, W.J., Wang, J., Kou, H.C., Zhang, D., and Beaugnon, E.: Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Mater. Des. 95, 183 (2016).
24. Niu, C., Zaddach, A.J., Koch, C.C., and Irving, D.L.: First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J. Alloys Compd. 672, 510 (2016).
25. Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater. Des. 81, 87 (2015).
26. Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemuller, C., Wagner, J.N., Christ, H.J., and Heilmaier, M.: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd. 661, 206 (2016).
27. Huang, C., Zhang, Y.Z., Shen, J.Y., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).
28. Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).
29. Yang, H.H., Tsai, W.T., and Kuo, J.C.: Effect of pre-oxidation on increasing resistance of Fe–Al–Ni–Cr–Co–Mn high entropy alloys to molten Al attack. Corros. Eng., Sci. Technol. 49, 124 (2014).
30. Butler, T.M., Alfano, J.P., Martens, R.L., and Weaver, M.L.: High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67, 246 (2015).
31. Butler, T.M. and Weaver, M.L.: Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229 (2016).
32. Liu, Y.X., Cheng, C.Q., Shang, J.L., Wang, R., Li, P., and Zhao, J.: Oxidation behavior of high-entropy alloys Al x CoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel. Trans. Nonferrous Met. Soc. China 25, 1341 (2015).
33. Holcomb, G.R., Tylczak, J., and Carnery, C.: Oxidation of CoCrFeMnNi high entropy alloys. JOM 67, 2326 (2015).
34. Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).
35. Dong, Y., Lu, Y.P., Kong, J.R., Zhang, J.J., and Li, T.J.: Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys. J. Alloys Compd. 573, 96 (2013).
36. Singh, A.K. and Subramaniam, A.: On the formation of disordered solid solutions in multi-component alloys. J. Alloys Compd. 587, 113 (2014).
37. Wagner, C.: Diffusion and high temperature oxidation of metals. In Atom Mov. Vol. 153 (American Society for Metals, Materials Park, 1951); p. 153.
38. Giggins, C.S. and Pettit, F.S.: Oxidation of Ni–Cr–Al alloys between 1000° and 1200 °C. J. Electrochem. Soc. 118, 1782 (1971).
39. Kear, B.H., Pettit, F.S., Fornwalt, D.E., and Lemaire, L.P.: On the transient oxidation of a Ni–15Cr–6Al alloy. Oxid. Met. 3, 557 (1971).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed