Skip to main content Accessibility help
×
Home

Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM

  • Qian-Li Liu (a1), Xiang-Ming Li (a1) and Ye-Hua Jiang (a1)

Abstract

The purpose of this work is, based on CAFE method, to study the microstructure evolution and optimize the quality of the large-scale titanium slab ingot during EBCHM. The nucleation parameters of the microstructure simulation of titanium ingot are determined based on one of the actual experimental results. For the determined parameters, our theoretical results are agreement with other experimental results. The effects of pouring temperature and pulling speed on the microstructure are presented based on CAFE method. The quantitative analyses of the simulated results show that with the pulling speed increasing, the number of grains decreases, whereas the mean grain radius increases under identical thermal condition; with the pouring temperature increasing, the mean grain radius increases under the given pulling speed. Our results are very important to obtain the optimal structure of the ingots by controlling pulling speed and pouring temperature.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: Lixm@kmust.edu.cn

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Boyer, R.R.: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213, 103114 (1996).
2. Seok, S., Onal, C.D., Cho, K.J., and Wood, R.J.: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE ASME Trans. Mechatron. 18, 14851497 (2013).
3. Mitchell, A.: The electron beam melting and refining of titanium alloys. Mater. Sci. Eng., A 263, 217223 (1999).
4. Vutova, K. and Donchev, V.: Electron beam melting and refining of metals: Computational modeling and optimization. Materials 6, 46264640 (2013).
5. Tatsuhiko, T., Kanayama, H., and Onoye, T.: Temperature measurement of molten metal surface in electron beam melting of titanium alloys. ISIJ Int. 32, 593599 (1992).
6. Liu, Q.L., Li, X.M., and Jiang, Y.H.: Research progress of electron beam clod hearth melting for titanium and titanium alloys. Hot Work. Technol. 45, 914 (2016).
7. Wood, J.R.: Producing Ti-6Al-4V plate from single-melt EBCHM ingot. JOM 54, 5658 (2002).
8. Vutova, K., Koleva, E., and Mladenov, G.: Simulation of thermal transfer process in cast ingot at electron beam melting and refining. Int. Rev. Mech. Eng. 5, 257265 (2009).
9. Koleva, E., Vutova, K., and Mladenov, G.: The role of ingot crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting. Vacuum 62, 189196 (2001).
10. Kalinyuka, A.N., Triguba, N.P., Zamkova, V.N., and Ivasishin, O.M.: Microstructure, texture, and mechanical properties of electron-beam melted Ti–6Al–4V. Mater. Sci. Eng., A 346, 178188 (2003).
11. Atwood, R.C., Lee, P.D., and Minisandram, R.S.: Multiscale modelling of microstructure formation during vacuum arc remelting of titanium 6-4. J. Mater. Sci. 39, 71937197 (2004).
12. Rappaz, M. and Gandin, Ch.A.: Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. Mater. 41, 345360 (1993).
13. Wu, S.P., Liu, D.R., Guo, J.J., Li, C.Y., and Su, Y.Q.: Numerical simulation of microstructure evolution of Ti–6Al–4V alloy in vertical centrifugal casting. Mater. Sci. Eng., A 426, 240249 (2006).
14. Gandin, Ch.A. and Rappaz, M.: A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42, 22332246 (1994).
15. Gandin, Ch.A., Rappaz, M., and Tintillier, R.: Three-dimensional probabilistic simulation of solidification grain structures: Application to superalloy precision castings. Metall. Mater. Trans. A 24, 467479 (1993).
16. Carozzani, T., Digonnet, H., and Gandin, C.: 3D CAFE modeling of grain structures: Application to primary dendritic and secondary eutectic solidification. Modell. Simul. Mater. Sci. Eng. 20, 1501015028 (2012).
17. Rappaz, M., Gandin, C.A., Desbiolles, J.L., and Thévoz, P.: Prediction of grain structures in various solidification processes. Metall. Mater. Trans. A 27, 695705 (1996).
18. Tian, F.J., Li, Z.G., and Song, J.X.: Solidification of laser deposition shaping for TC4 alloy based on cellular automation. J. Alloys Compd. 676, 542550 (2016).
19. Burbelko, A., Falkus, J., Kapturkiewicz, W., Sołek, K., Drożdż, P., and WróbeL, M.: Modeling of the grain structure formation in the steel continuous ingot by cafe method. Arch. Metall. Mater. 57, 379384 (2012).
20. Liu, Q.L., Li, X.M., Chen, X.F., Geng, N.T., and Jiang, Y.H.: Numerical simulation of electron beam cold hearth melting for the large scale titanium slab ingot during solidification process. Spec. Cast. Nonferrous Alloys 3, 244249 (2017).
21. Kurz, W., Giovanola, B., and Trivedi, R.: Theory of microstructural development during rapid solidification. Acta Metall. Mater. 34, 823830 (1986).
22. Kou, H.C., Zhang, Y.J., Li, P.F., Hu, R., Li, J.S., and Zhou, L.: Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFE method. Rare Met. Mater. Eng. 43, 15371542 (2014).
23. Wang, J.L., Wang, F.M., Zhao, Y.Y., Zhang, J.M., and Ren, W.: Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method. Int. J. Miner., Metall. Mater. 16, 640645 (2009).
24. Liu, Q.L., Li, X.M., and Jiang, Y.H.: Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum 141, 19 (2017).
25. Rappaz, M., Charbon, Ch., and Sasikumar, R.: About the shape of eutectic grains solidifying in a thermal gradient. Acta Metall. Mater. 42, 23652374 (1994).

Keywords

Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM

  • Qian-Li Liu (a1), Xiang-Ming Li (a1) and Ye-Hua Jiang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed