Skip to main content Accessibility help

Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment

  • Leinuo Shen (a1), Zhou Li (a1), Qiyi Dong (a2), Zhu Xiao (a3), Si Li (a4) and Qian Lei (a4)...


The variation of properties and evolution of microstructure of Cu–10Ni–3Al–0.8Si alloy during isothermal and aging treatment was studied. The time–temperature–property curves of the alloy were established. The nose temperature of the alloy was about 662 °C, and the alloy presented high quench sensitivity when quenched in the nose temperature zone. Discontinuous precipitation occurred when Cu–10Ni–3Al–0.8Si alloy was isothermally treated at 550 °C, and the discontinuous precipitates at the grain boundary became coarse when the isothermal temperature increased to 650 °C. Further increasing the isothermal temperature to 750 °C, cellular precipitation occurred in the alloy. Both Ni3Al precipitates with L12 ordered structure and δ-Ni2Si precipitates with DO22 ordered structure precipitated in the isothermally treated Cu–10Ni–3Al–0.8Si alloy. The orientation relationships between the precipitates and matrix were determined as ${[001]_{{\rm{Cu}}}}{\left\| {{{[001]}_{{\rm{N}}{{\rm{i}}_3}{\rm{Al}}}}\left\| {[001]} \right.} \right._\delta }$ , ${(110)_{{\rm{Cu}}}}{\left\| {{{(110)}_{{\rm{N}}{{\rm{i}}_3}{\rm{Al}}}}\left\| {(010)} \right.} \right._\delta }$ , and ${(1\bar 10)_{{\rm{Cu}}}}\left\| {{{(1\bar 10)}_{{\rm{N}}{{\rm{i}}_3}{\rm{Al}}}}} \right\|{(100)_\delta }$ .


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Xia, C-D., Jia, Y-L., Zhang, W., Dong, Q-Y., Xu, G-Y., and Wang, M-P.: Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments. Mater. Des. 39, 404 (2012).
2. Guo, F-A., Xiang, C-J., Yang, C-X., Cao, X-M., Mu, S-G., and Tang, Y-Q.: Study of rare earth elements on the physical and mechanical properties of a Cu-Fe-P-Cr alloy. Mater. Sci. Eng., B 147, 1 (2008).
3. Yagmur, L.: Effect of microstructure on internal friction and Young’s modulus of aged Cu-Be alloy. Mater. Sci. Eng., A 523, 65 (2009).
4. Xie, G-L., Wang, Q-S., Mi, X-J., Xiong, B-Q., and Peng, L-J.: The precipitation behavior and strengthening of a Cu-2.0 wt% Be alloy. Mater. Sci. Eng., A 558, 326 (2012).
5. Hu, T., Chen, J-H., Liu, J-Z., Liu, Z-R., and Wu, C-L.: The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys. Acta Mater. 61, 1210 (2012).
6. Pérez-Landazábal, J-I., Recarte, V., , M-L., and San, J-J.: Determination of the order in γ1 intermetallic phase in Cu-Al-Ni shape memory alloys. Intermetallics 11(9), 927 (2003).
7. Donoso, E., Espinoza, R., Diànez, M-J., and Criado, J-M.: Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy. Mater. Sci. Eng., A 56, 612 (2012).
8. Monzen, R. and Watanabe, C.: Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng., A 483484, 117 (2010).
9. Suzuki, S., Shibutani, N., Mimura, K., Isshiki, M., and Waseda, Y.: Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling. J. Alloys Compd. 417, 116 (2006).
10. Li, D., Franke, P., Fürtauer, S., Cupid, D., and Flandorfer, H.: The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics 34, 148 (2013).
11. Satoshi, S., Mikio, I., Shigeo, S., Kazuaki, W., and Takayuki, T.: Extraction of precipitates from age-hardenable Cu-Ti alloys. Mater. Charact. 82, 23 (2013).
12. Nestorović, S., Marković, I., and Marković, D.: Influence of thermomechanical treatment on the hardening mechanisms and structural changes of a cast Cu-6.6 wt.%Ag alloy. Mater. Des. 31, 1644 (2010).
13. Shiro, S. and Koji, N.: On quench sensitivity of Cu-Cr alloys. J. Jpn. Inst. Met. Mater. 33, 1155 (1969).
14. Zhang, X-M., Liu, W-J., Liu, S-D., and Zhou, M-Z.: Effect of processing parameters on quench sensitivity of an AA7050 sheet. Mater. Sci. Eng., A 528, 795 (2011).
15. Liu, S-D., Liu, W-J., Zhang, Y., Zhang, X-M., and Deng, Y-L.: Effect of microstructure on the quench sensitivity of AlZnMgCu alloys. J. Alloys Compd. 507, 53 (2010).
16. Hisashi, S. and Motohiro, K.: The T-T-T curve in Cu-Cr alloy. J. Jpn. Inst. Met. Mater. 35, 434 (1971).
17. Lei, Q., Li, Z., Zhu, A-Y., Qiu, W-T., and Liang, S-Q.: The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment. Mater. Charact. 62, 904 (2011).
18. Shen, L-N., Li, Z., Zhang, Z-M., Dong, Q-Y., Xiao, Z., Lei, Q., and Qiu, W-T.: Effects of silicon and thermo-mechanical process on microstructure and properties of Cu-10Ni-3Al-0.8Si alloy. Mater. Des. 62, 265 (2014).
19. Blatt, F-J.: Effect of point imperfections on the electrical properties of copper. I. Conductivity. Phys. Rev. 99(6), 1708 (1955).
20. Lei, Q., Li, Z., Xiao, T., Pang, Y., Xiang, Z-Q., Qiu, W-T., and Xiao, Z.: A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics 42, 77 (2013).
21. Alexander, W-O.: Copper-rich nickel-aluminium-copper alloys. Part II—The constitution of the copper-nickel-rich alloys. J. Inst. Met. 30, 425 (1938).
22. Cho, Y-R., Kim, Y-H., and Lee, T-D.: Precipitation hardening and recrystallization in Cu-4% to 7% Ni-3% Al alloys. J. Mater. Sci. 26, 2879 (1991).
23. Robinson, J-S., Cudd, R-L., Tanner, D-A., and Dolan, G-P.: Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J. Mater. Process. Technol. 119, 261 (2001).
24. Torma, T., Kovács, E-C., Turmezey, T., Ungár, T., and Kovács, I.: Hardening mechanisms in Al-Sc alloys. J. Mater. Sci. 24, 3924 (1989).


Related content

Powered by UNSILO

Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment

  • Leinuo Shen (a1), Zhou Li (a1), Qiyi Dong (a2), Zhu Xiao (a3), Si Li (a4) and Qian Lei (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.