Skip to main content Accessibility help
×
Home

Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition

  • Yandong Jia (a1), Fuyang Cao (a2), Pan Ma (a3), Sergio Scudino (a4), Jürgen Eckert (a5), Jianfei Sun (a2) and Gang Wang (a6)...

Abstract

The Al–50Si alloy, as a kind of potential electronic packaging material, is manufactured by different methods, such as casting and spray deposition. The possible influences of the P refiner on the microstructure of the Al–50Si alloy are investigated at different cooling rates. The refinement mechanism of primary Si phase is discussed in view of the P refiner addition, and the variation of the cooling rates. The thermal conductivity (TC), as a key parameter for electronic materials, is measured. The coupled effects of the cooling rate and the addition of the P refiner during the solidification of the Al–50Si alloy on the TC are elucidated based on structural observations. Furthermore, the porosity in the Al–50Si alloy is treated as a second phase influencing the TC.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: g.wang@shu.edu.cn

References

Hide All
1. Zhang, Q., Wu, G.H., Jiang, L.T., and Chen, G.Q.: Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC. Mater. Chem. Phys. 82, 780785 (2003).
2. Jia, Q.J., Liu, J.Y., Li, Y.X., and Wang, W.S.: Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming. Trans. Nonferrous Met. Soc. China 23, 8085 (2013).
3. Cai, Z.Y., Wang, R.C., Zhang, C., Peng, C.Q., Feng, Y., and Wang, L.Q.: Thermal cycling reliability of Al/50Sip composite for thermal management in electronic packaging. J. Mater. Sci.: Mater. Electron. 26, 48944901 (2015).
4. Hogg, S.C., Lambourne, A., Ogilvy, A., and Grant, P.S.: Microstructural characterisation of spray formed Si–30Al for thermal management applications. Scripta Mater. 55, 111114 (2006).
5. Chien, C.W., Lee, S.L., Lin, J.C., and Jahn, M.T.: Effects of Sip size and volume fraction on properties of Al/Sip composites. Mater. Lett. 52, 334341 (2002).
6. Jacobson, D.M., Ogilvy, A.J.W., and Leatham, A.G.: Applications of Osprey lightweight controlled expansion (CE) alloys. Tech. Rep., 112 (2004).
7. Rao, A.G., Rao, B.R.K., Deshmukh, V.P., Shah, A.K., and Kashyap, B.: Microstructural refinement of a cast hypereutectic Al–30Si alloy by friction stir processing. Mater. Lett. 63, 26282630 (2009).
8. Goudar, D.M., Raju, K., Srivastava, V.C., and Rudrakshi, G.B.: Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Mater. Des. 51, 383390 (2013).
9. Ma, P., Zou, C.M., Wang, H.W., Scudino, S., Fu, B.G., Wei, Z.J., Kühn, U., and Eckert, J.: Effects of high pressure and SiC content on microstructure and precipitation kinetics of Al–20Si alloy. J. Alloys Compd. 586, 639644 (2014).
10. Li, D.K., Zuo, M., Zhang, Q., and Liu, X.F.: The investigation of continuous nucleation and refinement of primary Si in Al–30Si mushy zone. J. Alloys Compd. 502, 304309 (2010).
11. Cao, F.Y., Jia, Y.D., Ma, P., Prashanth, K.G., Liu, J.S., Scudino, S., Huang, F., Eckert, J., and Sun, J.F.: Evolution of microstructure and mechanical properties of as-cast Al–50Si alloy due to heat treatment and P modifier content. Mater. Des. 74, 150156 (2015).
12. Zhang, L., Gan, G.S., and Yang, B.: Microstructure and property measurements on in situ TiB2/70Si–Al composite for electronic packaging applications. Mater. Des. 36, 177181 (2012).
13. Zhu, X.W., Wang, R.C., Peng, C.Q., Liu, W.S., and Peng, J.: Microstructure and thermal expansion behavior of spray-formed Al–27Si alloy used for electronic packaging. J. Mater. Sci.: Mater. Electron. 25, 48894895 (2014).
14. Hong, S.J. and Suryanarayana, C.: Mechanical properties and fracture behavior of an ultrafine-grained Al–20 wt pct Si alloy. Metall. Mater. Trans. A 36, 715723 (2005).
15. Yu, S.R., Feng, H.K., Li, Y.L., and Gong, L.Y.: Study on the properties of Al–23%Si alloy treated by ultrasonic wave. J. Alloys Compd. 484, 360364 (2009).
16. Wang, F., Xiong, B.Q., Zhang, Y.A., Zhu, B.H., Liu, H.W., and We, Y.G.: Microstructure, thermo-physical and mechanical properties of spray-deposited Si–30Al alloy for electronic packaging application. Mater. Charact. 59, 14551457 (2008).
17. Cui, C., Schulz, A., Schimanski, K., and Zoch, H.W.: Spray forming of hypereutectic Al–Si alloys. J. Mater. Process. Technol. 209, 52205228 (2009).
18. Jia, Y.D., Cao, F.Y., Scudino, S., Ma, P., Li, H.C., Yu, L., Yu, L., Eckert, J., and Sun, J.F.: Microstructure and thermal expansion behavior of spray-deposited Al–50Si. Mater. Des. 57, 585591 (2014).
19. Dai, H.S. and Liu, X.F.: Refinement performance and mechanism of an Al–50Si alloy. Mater. Charact. 59, 15591563 (2008).
20. Sastry, K.Y., Froyen, L., Vleugels, J., Bentefour, E.H., and Glorieux, C.: Effect of porosity on thermal conductivity of Al–Si–Fe–X alloy powder compacts. Int. J. Thermophys. 25, 16111622 (2004).
21. Rudajevová, A.: Thermal diffusivity and thermal conductivity of Ni53.6Mn27.1Ga19.3 shape memory alloy. Int. J. Therm. Sci. 47, 12431248 (2008).
22. Dai, H.S. and Liu, X.F.: The combined effect of titanic carbide and aluminum phosphide on the refinement of primary silicon in Al–50Si alloy. Int. J. Mater. Res. 99, 13791383 (2008).
23. Zhang, Q., Liu, X.F., and Dai, H.S.: Re-formation of AlP compound in Al–Si melt. J. Alloys Compd. 480, 376381 (2009).
24. Zuo, M., Zhao, D.G., Teng, X.Y., Geng, H.R., and Zhang, Z.S.: Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys. Mater. Des. 47, 857864 (2013).
25. Kobayashi, K.F. and Hogan, L.M.: The crystal growth of silicon in Al–Si alloys. J. Mater. Sci. 20, 19611975 (1985).
26. Wang, R.Y., Lu, W.H., and Hogan, L.M.: Growth morphology of primary silicon in cast Al–Si alloys and the mechanism of concentric growth. J. Cryst. Growth 207, 4354 (1999).
27. Grant, P.S.: Solidification in spray forming. Metall. Mater. Trans. A 38, 15201529 (2007).
28. Okumus, S.C., Aslan, S., Karslioglu, R., Gultekin, D., and Akbulut, H.: Thermal expansion and thermal conductivity behaviors of Al–Si/SiC/graphite hybrid metal matrix composites. Mater. Sci. 18, 341346 (2012).
29. Chihiro, K.W.: Effect of interfacial reaction on the thermal conductivity of Al–SiC composites with SiC dispersions. J. Am. Ceram. Soc. 84, 896898 (2001).
30. Molina, J.M., Narciso, J., Weber, L., Mortensen, A., and Louis, E.: Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Mater. Sci. Eng., A 480, 483488 (2008).
31. Abdullah, Y., Daud, A.R., Harun, M., and Shamsudin, R.: Investigation of thermal properties of Al–Si matrix reinforced fine SiCp composites. Mater. Sci. Technol. 26, 15181520 (2010).
32. Pitchumani, R., Liaw, P.K., Yao, S.C., Hsu, D.K., and Jeong, H.: Theoretical models for the anisotropic conductivities of two-phase and three-phase metal–matrix composites. Acta Metall. 43, 30453059 (1995).
33. Molina, J.M., Prieto, R., Narciso, J., and Louis, E.: The effect of porosity on the thermal conductivity of Al–12 wt% Si/SiC composites. Scripta Mater. 60, 582585 (2009).

Keywords

Microstructure and thermal conductivity of hypereutectic Al-high Si produced by casting and spray deposition

  • Yandong Jia (a1), Fuyang Cao (a2), Pan Ma (a3), Sergio Scudino (a4), Jürgen Eckert (a5), Jianfei Sun (a2) and Gang Wang (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed