Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T12:38:30.717Z Has data issue: false hasContentIssue false

Microstructural evolution of ZrO2–HfO2 nanolaminate structures grown by atomic layer deposition

Published online by Cambridge University Press:  03 March 2011

Hyoungsub Kim*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Paul C. McIntyre
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Krishna C. Saraswat
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, California 94305
*
a)Address all correspondence to this author. e-mail: hsubkim@stanford.edu
Get access

Abstract

Zirconia–hafnia (ZrO2–HfO2) nanolaminate structures were grown using the atomic layer deposition (ALD) technique with different stacking sequences and layer thickness layer thicknesses. The microstructural evolution and surface roughness were compared with those of single-layer ZrO2 or HfO2 films using transmission electron microscopy and atomic force microscopy. Thin single-layer ALD-ZrO2 films were polycrystalline and composed of the tetragonal ZrO2 phase as-deposited, whereas thicker (>14 nm) films were composed mainly of the monoclinic phase. HfO2 films were amorphous as-deposited and crystallized into primarily monoclinic during subsequent anneals at temperatures over 500 °C. All the nanolaminate structures having individual layer thicknesses greater than approximately 2 nm were crystalline (mixture of tetragonal and monoclinic phases) independent of layer sequence and also exhibited a layer-to-layer epitaxy relationship within each grain. However, the identity of the starting layer determined the final grain size and surface roughness of the nanolaminates. A qualitative model for the observed microstructure evolution of the laminate films is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Packan, P.: Science 285 2079 (1999).CrossRefGoogle Scholar
2Wilk, G.D. and Wallace, R.W.: Appl. Phys. Lett. 76 112 (2000).CrossRefGoogle Scholar
3Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. and Timp, G.: Nature 399 758 (1999).CrossRefGoogle Scholar
4Robertson, J.: J. Vac. Sci. Technol. B 18 1785 (2000).CrossRefGoogle Scholar
5Kukli, K., Ihanus, J., Ritala, M. and Leskela, M.: Appl. Phys. Lett. 68 3737 (1996).CrossRefGoogle Scholar
6Kukli, K., Ihanus, J., Ritala, M. and Leskela, M.: J. Electrochem. Soc. 144 300 (1997).Google Scholar
7Zhang, H. and Solanki, R.: J. Electrochem. Soc. 148 F63 (2001).CrossRefGoogle Scholar
8Cho, M-H., Roh, Y.S., Whang, C.N., Jeong, K., Choi, H.J., Nam, S.W., Ko, D-H., Lee, J.H., Lee, N.I. and Fujihara, K.: Appl. Phys. Lett. 81 1071 (2002).CrossRefGoogle Scholar
9Ritala, M., Kukli, K., Raisanen, P.I., Leskela, M., Sajavaara, T. and Keinonen, J.: Science 288 319 (2000).CrossRefGoogle Scholar
10Copel, M., Gribelyuk, M. and Gusev, E.: Appl. Phys. Lett. 76 436 (2000).CrossRefGoogle Scholar
11Samsonov, G.V.The Oxide Handbook (Plenum, New York, 1981).Google Scholar
12Scanlan, C.M., Gajdardziska-Josifovska, M. and Aita, C.R.: Appl. Phys. Lett. 64 3548 (1994).CrossRefGoogle Scholar
13Aita, C.R., Wiggins, M.D., Whig, R., Scanlan, C.M. and Gajdardziska-Josifovska, M.: J. Appl. Phys. 79 1176 (1996).CrossRefGoogle Scholar
14Kim, H., McIntyre, P.C. and Saraswat, K.C. (unpublished work).Google Scholar
15Kim, H., McIntyre, P.C. and Saraswat, K.C.: Appl. Phys. Lett. 82 106 (2003).CrossRefGoogle Scholar
16Kingery, W.D., Bowen, H.K. and Uhlmann, D.R.Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976), Chap. 3.Google Scholar
17Ruh, R., Garrett, H.J., Domagala, R.F. and Tallan, N.M.: J. Am. Ceram. Soc. 51 23 (1968).CrossRefGoogle Scholar