Skip to main content Accessibility help

Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion

  • Hamed Bahmanpour (a1), Yu Sun (a1), Tao Hu (a1), Dalong Zhang (a1), Jittraporn Wongsa-Ngam (a2), Terence G. Langdon (a3) and Enrique J. Lavernia (a4)...


To provide insight into the influence of the length scale on the kinetics of phase evolution during severe plastic deformation, we studied the microstructure evolution of cryomilled Al and Ti mixture, which is further subjected to high-pressure torsion (HPT). The cryomilled microstructure consisted of elemental Al and Ti, and the subsequent HPT deformation at ambient temperature led to the solid state formation of Al-rich intermetallics. X-ray diffraction peaks originating from TiAl2 and TiAl3 were observed after one revolution of HPT, suggesting a shear strain-assisted formation of the intermetallics. A high resolution transmission electron microscope confirmed the formation of TiAl2 following HPT for one revolution. Further HPT straining led to microstructure refinement and a mixing of the Ti and Al, as well as of any phases formed initially. The solid state formation of the intermetallics and the overall evolution of the microstructure are discussed based on the generation of a high density of lattice defects that evolve under the strain conditions present during HPT.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Farhang, M.R., Kamali, A.R., and Nazarian-Samani, M.: Effects of mechanical alloying on the characteristics of a nanocrystalline Ti-50 at.%Al during hot pressing consolidation. Mater. Sci. Eng., B 168(1–3), 136 (2010).
2. Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).
3. Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(7), 881 (2006).
4. Angella, G., Bassani, P., Tuissi, A., and Vedani, M.: Intermetallic particle evolution during ECAP processing of a 6082 alloy. Mater. Trans. 45(7), 2182 (2004).
5. Edalati, K., Toh, S., Watanabe, M., and Horita, Z.: In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion. Scr. Mater. 66(6), 386 (2012).
6. Edalati, K., Toh, S., Iwaoka, H., Watanabe, M., Horita, Z., Kashioka, D., Kishida, K., and Inui, H.: Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scr. Mater. 67(10), 814 (2012).
7. Li, Y., Zhao, Y.H., Liu, W., Xu, C., Horita, Z., Liao, X.Z., Zhu, Y.T., Langdon, T.G., and Lavernia, E.J.: Influence of grain size on the density of deformation twins in Cu–30%Zn alloy. Mater. Sci. Eng., A 527(16–17), 3942 (2010).
8. Wongsa-Ngam, J., Wen, H., and Langdon, T.G.: Microstructural evolution in a Cu–Zr alloy processed by a combination of ECAP and HPT. Mater. Sci. Eng., A 579(0), 126 (2013).
9. Lui, E.W., Xu, W., Wu, X., and Xia, K.: Multiscale two-phase Ti–Al with high strength and plasticity through consolidation of particles by severe plastic deformation. Scr. Mater. 65(8), 711 (2011).
10. Bahmanpour, H., Youssef, K.M., Horky, J., Setman, D., Atwater, M.A., Zehetbauer, M.J., Scattergood, R.O., and Koch, C.C.: Deformation twins and related softening behavior in nanocrystalline Cu-30% Zn alloy. Acta Mater. 60(8), 3340 (2012).
11. Oh-ishi, K., Edalati, K., Kim, H.S., Hono, K., and Horita, Z.: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61(9), 3482 (2013).
12. Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528(28), 8198 (2011).
13. Figueiredo, R.B., Pereira, P.H.R., Aguilar, M.T.P., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60(6–7), 3190 (2012).
14. Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Pub. Co., Reading, MA, 1978).
15. Wilson, A.J.C.: X-Ray Optics; The Diffraction of X-Rays by Finite and Imperfect Crystals (Methuen, London, 1949).
16. Williamson, G.K. and Smallman, R.E.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1(1), 34 (1956).
17. Ertorer, O., Topping, T., Li, Y., Moss, W., and Lavernia, E.J.: Enhanced tensile strength and high ductility in cryomilled commercially pure titanium. Scr. Mater. 60(7), 586 (2009).
18. Witkin, D.B. and Lavernia, E.J.: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51(1), 1 (2006).
19. Oehring, M., Klassen, T., and Bormann, R.: The formation of metastable Ti-Al solid-solutions by mechanical alloying and ball-milling. J. Mater. Res. 8(11), 2819 (1993).
20. Kumaran, S., Rao, T.S., Subramanian, R., and Angelo, P.: Nanocrystalline and amorphous structure formation in Ti-Al system during high energy ball milling. Powder Metall. 48(4), 354 (2005).
21. Edalati, K., Horita, Z., Furuta, T., and Kuramoto, S.: Dynamic recrystallization and recovery during high-pressure torsion: Experimental evidence by torque measurement using ring specimens. Mater. Sci. Eng., A 559(0), 506 (2013).
22. Wang, Y.B., Ho, J.C., Cao, Y., Liao, X.Z., Li, H.Q., Zhao, Y.H., Lavernia, E.J., Ringer, S.P., and Zhu, Y.T.: Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy. Appl. Phys. Lett. 94(9), 091911 (2009).
23. Li, L., Ungár, T., Wang, Y.D., Fan, G.J., Yang, Y.L., Jia, N., Ren, Y., Tichy, G., Lendvai, J., Choo, H., and Liaw, P.K.: Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni–Fe alloy. Scr. Mater. 60(5), 317 (2009).
24. Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H., Li, X., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88(2), 021909 (2006).
25. Qian, Y., Zhi-Wei, S., Ju, L., Xiaoxu, H., Lin, X., Jun, S., and Ma, E.: Strong crystal size effect on deformation twinning. Nature 463(7279), 335 (2010).
26. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1 (2001).
27. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).
28. Wang, Y., Srolovitz, D.J., Rickman, J.M., and Lesar, R.: Dislocation motion in the presence of diffusing solutes: A computer simulation study. Acta Mater. 48(9), 2163 (2000).
29. Hu, S.Y., Choi, J., Li, Y.L., and Chen, L.Q.: Dynamic drag of solute atmosphere on moving edge dislocations: Phase-field simulation. J. Appl. Phys. 96(1), 229 (2004).
30. Chen, Y.C. and Nakata, K.: Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Mater. Des. 30(3), 469 (2009).
31. Wang, G.X. and Dahms, M.: Synthesizing gamma-TiAl alloys by reactive powder processing. JOM 45(5), 52 (1993).
32. Wang, G.X. and Dahms, M.: TiAl-based alloys prepared by elemental powder-metallurgy-overview. Powder Metall. Int. 24(4), 219 (1992).
33. Kattner, U.R., Lin, J.C., and Chang, Y.A.: Thermodynamic assessment and calculation of the Ti-Al system. Metall. Trans. A 23(8), 2081 (1992).
34. Mehrer, H.: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes (Springer, Berlin, New York, 2007).
35. Vo, N.Q., Zhou, J., Ashkenazy, Y., Schwen, D., Averback, R.S., and Bellon, P.: Atomic mixing in metals under shear deformation. JOM 65(3), 382 (2013).
36. Divinski, S.V., Reglitz, G., Rösner, H., Estrin, Y., and Wilde, G.: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59(5), 1974 (2011).
37. Divinski, S.V., Ribbe, J., Baither, D., Schmitz, G., Reglitz, G., Rösner, H., Sato, K., Estrin, Y., and Wilde, G.: Nano- and micro-scale free volume in ultrafine grained Cu–1wt.%Pb alloy deformed by equal channel angular pressing. Acta Mater. 57(19), 5706 (2009).
38. Fujita, T., Horita, Z., and Langdon, T.G.: Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al–Mg and Al–Zn alloys. Mater. Sci. Eng., A 371(1–2), 241 (2004).
39. Hersh, H.N.: The Kirkendall effect in alloy systems. J. Appl. Phys. 23(9), 1055 (1952).


Related content

Powered by UNSILO

Microstructural evolution of cryomilled Ti/Al mixture during high-pressure torsion

  • Hamed Bahmanpour (a1), Yu Sun (a1), Tao Hu (a1), Dalong Zhang (a1), Jittraporn Wongsa-Ngam (a2), Terence G. Langdon (a3) and Enrique J. Lavernia (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.