Skip to main content Accessibility help

Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets

  • Mahmood Khan (a1), Maham Amjad (a1), Ansa Khan (a1), Rafi Ud-Din (a2), Iftikhar Ahmad (a3) and Tayyab Subhani (a1)...


Aluminum matrix composites were prepared by powder processing route containing three different loadings of graphene nanoplatelets, i.e., 1 wt%, 3 wt%, and 5 wt%. Ball milling of composite powders was performed to ensure the uniform dispersion of nanoplatelets in aluminum powder, followed by their consolidation to near theoretical densities. Microstructural evolution after composite preparation was witnessed by X-ray diffraction, optical microscopy, and scanning electron microscopy, while the mechanical property profile was evaluated by hardness, compression, and flexural tests. The mechanical properties of composites containing 5 wt% nanoplatelets were found with maximum improvements in hardness, compression, and flexural strengths of 35%, 433%, and 283%, respectively. This increase in mechanical performance is related to uniform dispersion and microstructural development in composites by incorporating nanoplatelets. Fractographic characterization indicated a change in fracture morphology from matrix-dominant in pure aluminum to nanoplatelet-dominant in composites. In particular, shearing and pull out of nanoplatelets were observed during the fracture of composites with simultaneous restricted plastic deformation of the surrounding aluminum matrix.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Jürgen Eckert



Hide All
1. Chen, X-H. and Yan, H.: Fabrication of nanosized Al2O3 reinforced aluminum matrix composites by subtype multifrequency ultrasonic vibration. J. Mater. Res. 30, 2197 (2015).
2. Hao, S. and Xie, J.: Tensile properties and strengthening mechanisms of SiC p-reinforced aluminum matrix composites as a function of relative particle size ratio. J. Mater. Res. 28, 2047 (2013).
3. Hanabe, M. and Aswath, P.: Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction. J. Mater. Res. 11, 1562 (1996).
4. Michael Rajan, H.B., Ramabalan, S., Dinaharan, I., and Vijay, S.J.: Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438 (2013).
5. Lloyd, D.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).
6. Shirvanimoghaddam, K., Hamim, S.U., Karbalaei Akbari, M., Fakhrhoseini, S.M., Khayyam, H., Pakseresht, A.H., Ghasali, E., Zabet, M., Munir, K.S., Jia, S., Davim, J.P., and Naebe, M.: Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites, Part A 92, 70 (2017).
7. Rawal, S.: Metal–matrix composites for space applications. JOM 53, 14 (2001).
8. Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2010).
9. Gao, X., Yue, H., Guo, E., Zhang, H., Lin, X., Yao, L., and Wang, B.: Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54 (2016).
10. Sun, Y., Lyu, Y., Jiang, A., and Zhao, J.: Fabrication and characterization of aluminum matrix fly ash cenosphere composites using different stir casting routes. J. Mater. Res. 29, 260 (2014).
11. Latief, F.H., Sherif, E-S.M., Almajid, A.A., and Junaedi, H.: Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior. J. Anal. Appl. Pyrolysis 92, 485 (2011).
12. Yan, S.J., Dai, S.L., Zhang, X.Y., Yang, C., Hong, Q.H., Chen, J.Z., and Lin, Z.M.: Investigating aluminum alloy reinforced by graphene nanoflakes. Mater. Sci. Eng., A 612, 440 (2014).
13. Tian, W-m., Li, S-m., Wang, B., Chen, X., Liu, J-h., and Yu, M.: Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner., Metall. Mater. 23, 723 (2016).
14. Ahmad, I., Islam, M., Subhani, T., and Zhu, Y.: Characterization of GNP-containing Al2O3 nanocomposites fabricated via high frequency-induction heat sintering route. J. Mater. Eng. Perform. 24, 4236 (2015).
15. Ahmad, I., Islam, M., Abdo, H.S., Subhani, T., Khalil, K.A., Almajid, A.A., Yazdani, B., and Zhu, Y.: Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater. Des. 88, 1234 (2015).
16. Bastwros, M., Kim, G-Y., Zhu, C., Zhang, K., Wang, S., Tang, X., and Wang, X.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites, Part B 60, 111 (2014).
17. Rashad, M., Pan, F., Tang, A., and Asif, M.: Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci.: Mater. Int. 24, 101 (2014).
18. Zhang, H., Xu, C., Xiao, W., Ameyama, K., and Ma, C.: Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng., A 658, 8 (2016).
19. Yolshina, L.A., Muradymov, R.V., Korsun, I.V., Yakovlev, G.A., and Smirnov, S.V.: Novel aluminum–graphene and aluminum–graphite metallic composite materials: Synthesis and properties. J. Alloys Compd. 663, 449 (2016).
20. Ipekoglu, M., Nekouyan, A., Albayrak, O., and Altintas, S.: Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting. J. Mater. Res. 1, 599 (2017).
21. Ghazaly, A., Seif, B., and Salem, H.G.: Mechanical and tribological properties of AA2124-graphene self lubricating nanocomposite. In Light Metals 2013 (John Wiley & Sons, Inc., Hoboken, 2013); p. 411.
22. Zakharchenko, K.V., Annalisa, F., Los, J.H., and Katsnelson, M.I.: Melting of graphene: From two to one dimension. J. Phys.: Condens. Matter 23, 202202 (2011).
23. Liu, J., Khan, U., Coleman, J., Fernandez, B., Rodriguez, P., Naher, S., and Brabazon, D.: Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 94, 87 (2016).
24. Alam, S.N. and Kumar, L.: Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater. Sci. Eng., A 667, 16 (2016).
25. Tabandeh-Khorshid, M., Omrani, E., Menezes, P.L., and Rohatgi, P.K.: Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol., Int. J. 19, 463 (2016).
26. Sharma, V., Prakash, U., and Kumar, B.V.M.: Surface composites by friction stir processing: A review. J. Mater. Process. Technol. 224, 117 (2015).
27. Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J., and Zhou, L.: Graphene-reinforced metal matrix nanocomposites–A review. Mater. Sci. Technol. 32, 930 (2016).
28. Bartolucci, S.F., Paras, J., Rafiee, M.A., Rafiee, J., Lee, S., Kapoor, D., and Koratkar, N.: Graphene–aluminum nanocomposites. Mater. Sci. Eng., A 528, 7933 (2011).
29. Pérez-Bustamante, R., Bolaños-Morales, D., Bonilla-Martínez, J., Estrada-Guel, I., and Martínez-Sánchez, R.: Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615(Suppl. 1), S578 (2014).
30. Li, Z., Fan, G., Guo, Q., Li, Z., Su, Y., and Zhang, D.: Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419 (2015).
31. Rashad, M., Pan, F., Tang, A., Asif, M., Hussain, S., Gou, J., and Mao, J.: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243 (2015).
32. Bonollo, F., Molinas, B., Tangerini, I., and Zambon, A.: Diametral compression testing of metal matrix composites. Mater. Sci. Technol. 10, 558 (1994).
33. Karbalaei Akbari, M., Baharvandi, H.R., and Shirvanimoghaddam, K.: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66(Part A), 150 (2015).
34. Shin, S.E. and Bae, D.H.: Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites, Part A 78, 42 (2015).


Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets

  • Mahmood Khan (a1), Maham Amjad (a1), Ansa Khan (a1), Rafi Ud-Din (a2), Iftikhar Ahmad (a3) and Tayyab Subhani (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed