Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:40:26.925Z Has data issue: false hasContentIssue false

Microstructural evolution during high-energy mechanical alloying of immiscible Zr–Cr alloy

Published online by Cambridge University Press:  24 June 2020

J. Arasteh
Affiliation:
Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman76169133, Iran
G.H. Akbari*
Affiliation:
Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman76169133, Iran
*
a)Address all correspondence to this author. e-mail: gholamhoseinakbari12@gmail.com
Get access

Abstract

In this research, the mechanical alloying (MA) technique was used to study solid solubility in the immiscible Zr–Cr alloy system. At first, Zr and Cr powders were milled, and then, the phase evolution, alloying mechanism, microstructural change, and mechanical properties of the milled powders were investigated by X-ray diffraction technique, scanning electron microscopy along with energy dispersive spectroscopy, transition electron microscopy, and microhardness measurements. Moreover, the solubility limit of Zr in Cr lattice was obtained by Vegard's law. The results showed that the MA was significantly enhanced the solubility of Zr in Cr up to about 21.6 wt% after an optimum milling time of 32 h and led to form an amorphous/nanocrystalline composite of Zr-reach and Cr-reach supersaturated solid solutions with the microhardness value of 503 Hv approximately. Also, the thermodynamic analysis indicated that the Gibbs free energy changes for the amorphous and solid solution were positive, which were provided by the MA process.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar Mayaa, A.E., Granab, D.R., Hazarabediana, A., Kokubub, G.A., Luppob, M.I., and Vignab, G.: Zr–Ti–Nb porous alloys for biomedical application. Mater. Sci. Eng. C 32(2), 321329 (2012).CrossRefGoogle Scholar
Purcek, G., Saray, O., Rubitschek, F., Niendorf, T., Maier, H.J., and Karaman, I.: Effect of internal oxidation on wear behavior of ultrafine-grained Nb–Zr. Acta Mater. 59(20), 76837694 (2011).CrossRefGoogle Scholar
Von, K.A. and Sauthoff, G.: Laves phases for high temperatures—Part II: Stability and mechanical properties. Intermetallics 10(5), 497510 (2002).Google Scholar
Scudino, S., Donnadieu, P., Surreddi, K.B., Nikolowski, K., Stoica, M., and Eckert, J.: Microstructure and mechanical properties of Laves phase-reinforced Fe–Zr–Cr alloys. Intermetallics 17(7), 532539 (2009).CrossRefGoogle Scholar
Chen, E.Y., Deo, C., and Dingreville, R.: Irradiation resistance of nanostructured interfaces in Zr–Nb metallic multilayers. J. Mater. Res. 34(13), 22392251 (2019).CrossRefGoogle Scholar
Mingard, K.P. and Cantor, B.: Microstructural characterization of reactions in Al–Zr thin film couples. J. Mater. Res. 8(2), 274285 (1993).CrossRefGoogle Scholar
Kim, K.H., Ahn, J.P., Lee, J.H., and Lee, J.C.: High-strength Cu–Zr binary alloy with an ultrafine eutectic microstructure. J. Mater. Res. 23(7), 19871994 (2008).CrossRefGoogle Scholar
Garces, G. and Adeva, P.: Development and evolution of texture in Mg–Zr alloy deposited by physical vapor deposition. J. Mater. Res. 17(3), 614619 (2002).CrossRefGoogle Scholar
Ehrhart, P., Averback, R.S., Hahn, H., Yadavalli, S., and Flynn, C.P.: Fast diffusion and nucleation of the amorphous phase in Ni–Zr films. J. Mater. Res. 3(6), 12761278 (1988).CrossRefGoogle Scholar
Lee, D.M., Sun, J.H., Kang, D.H., and Shin, S.Y.: Experimental investigation of Zr-rich Zr–Zr2Ni–(Zr,Ti)2Ni ternary eutectic system. J. Mater. Res. 24(7), 23382345 (2009).CrossRefGoogle Scholar
Karpe, N., Bottiger, J., Greer, A.L., Janting, J., and Larsen, K.K.: On the chemical diffusion in layered thin films containing amorphous Co–Zr, Ni–Zr, and Fe–Zr. J. Mater. Res. 7(4), 926933 (1992).CrossRefGoogle Scholar
Zhang, X., Li, Y., He, X., Sun, Y., Pang, S., Su, G., Liu, X., and Yang, Z.: Influence of Cr addition on microstructure and mechanical properties of Zr-based alloys corresponding to Zr–C–Cr system. Alloys Compd. 640, 240245 (2015).CrossRefGoogle Scholar
Jung, Y.I., Seol, Y.N., Choi, B.K., Park, J.Y., and Jeong, Y.H.: Effect of Cr on the creep properties of zirconium alloys. Nucl. Mater. 396(2-3), 303306 (2010).CrossRefGoogle Scholar
Ali, F., Mehmood, M., Qasim, A.M., Ahmada, J., Rehman, N., Iqbal, M., and Qureshi, A.H.: Comparative study of the structure and corrosion behavior of Zr-20%Cr and Zr-20%Ti alloy films deposited by multi-arc ion plating technique. Thin Solid Films 564, 277283 (2014).CrossRefGoogle Scholar
Peng, D.Q., Bai, X.D., Yu, R.H., Chen, X.W., Zhou, Q.G., Liu, X.Y., and Deng, P.Y.: Role of chromium ion implantation on the corrosion behavior of zircaloy-4 in 0.5M H2SO4. Electrochim. Acta 49(9-10), 14031408 (2004).CrossRefGoogle Scholar
Peng, D.Q., Bai, X.D., Yu, R.H., Chen, X.W., Zhou, Q.G., Liu, X.Y., and Deng, P.Y.: Role of chromium ion implantation on the corrosion behavior of zirconium in 1N H2SO4. Appl. Surf. Sci. (230(1-4), 7380 (2004).CrossRefGoogle Scholar
Kuprin, АS, Belous, , Voyevodin, V.N., Bryk, V.V., Vasilenko, R.L., Ovcharenko, V.D., Reshetnyak, E.N., Tolmachova, G.N., and Vyugov, P.N.: Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air. Nucl. Mater. 465, 400406 (2015).CrossRefGoogle Scholar
Zhang, Z.G., Feng, Z.H., Jiang, X.J., Zhang, X.Y., Ma, M.Z., and Liu, R.P.: Microstructure and tensile properties of novel Zr–Cr binary alloys processed by hot rolling. Mater. Sci. Eng. A 652, 7783 (2016).CrossRefGoogle Scholar
Gonzalez, R.O. and Gribaudo, L.M.: Analysis of controversial zones of the Zr–Cr equilibrium diagram. Nucl. Mater. 342(1-3), 1419 (2005).CrossRefGoogle Scholar
Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L.: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, USA, 1990).Google Scholar
Sang Park, H., Shin, K.S., and Kim, Y.S.: Effect of mechanical alloying on combustion synthesis of MoSi2. J. Mater. Res. 16(11), 30603068 (2001).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1-2), 1184 (2001).CrossRefGoogle Scholar
Vaidya, M., Muralikrishna, G.M., and Murty, B.S.: High-entropy alloys by mechanical alloying: A review. J. Mater. Res. 34(5), 664686 (2009).CrossRefGoogle Scholar
Khazaei Feizabad, M.H., Sharafi, S., Khayati, G.R., and Ranjbar, M.: Effect of process control agent on the structural and magnetic properties of nano/amorphous Fe0.7Nb0.1Zr0.1Ti0.1 powders prepared by high energy ball milling. Magn. Magn. Mater. 449, 297303 (2018).CrossRefGoogle Scholar
Itsukaichi, T., Masuyama, K., Umemoto, M., Okane, I., and CabanTas-Moreno, J.G.: Mechanical alloying of Al-Ti powder mixtures and their subsequent consolidation. J. Mater. Res. 8(8), 18171828 (1993).CrossRefGoogle Scholar
Khazaei Feizabad, M.H., Sharafi, S., Khayati, G.R., and Ranjbar, M.: Modeling of stress relaxation kinetics of amorphous Fe0.7Nb0.1Zr0.1Ti0.1 alloy powder: A novel approach based on differential thermal analysis. Powder Technol. 336, 441448 (2018).CrossRefGoogle Scholar
Batalla, E. and Zwartz, E.G.: Preparation of Cu–Y–Ba alloys by mechanical alloying. J. Mater. Res. 5(9), 18021805 (2011).CrossRefGoogle Scholar
Jayashankar, S. and Kaufman, M.J.: Tailored MoSi2/SiC composites by mechanical alloying. J. Mater. Res. 8(6), 14281441 (1993).CrossRefGoogle Scholar
Khazaei Feizabad, M.H., Khayati, G.R., Sharafi, S., and Ranjbar, M.: Improvement of soft magnetic properties of Fe0.7Nb0.1Zr0.1Ti0.1 amorphous alloy: A kinetic study approach. Non-Cryst. Solids 493, 1119 (2018).CrossRefGoogle Scholar
Caer, G.L., Matteazzi, P., and Fultz, B.: A microstructural study of mechanical alloying of Fe and Sn powders. J. Mater. Res. 7(6), 13871395 (1992).CrossRefGoogle Scholar
Chitralekha, J., Raviprasad, K., Gopal, E.S.R., and Chattopadhyay, K.: Formation of metastable π phase in mechanically alloyed tellurium-rich Ag–Te alloys. J. Mater. Res. 196, 18971904 (2011).Google Scholar
Khazaei Feizabad, M.H., Khayati, G.R., and Minouei, H.: A kinetic study approach for in-situ preparation of amorphous Ni based nanocomposite reinforced by nanocrystalline Ni–Ti shape memory alloy. Non-Cryst. Solids 524, 119652 (2019).CrossRefGoogle Scholar
Lou, T., Fan, G., Ding, B., and Hu, Z.: The synthesis of NbSi2 by mechanical alloying. J. Mater. Res. 12(5), 11721175 (1997).CrossRefGoogle Scholar
Suryanarayana, C. and Froes, F.H.: Nanocrystalline titanium–magnesium alloys through mechanical alloying. J. Mater. Res. 5(9), 18801886 (1990).CrossRefGoogle Scholar
Schoenitz, M. and Dreizin, E.L.: Structure and properties of Al–Mg mechanical alloys. J. Mater. Res. 18(8), 18271836 (2003).CrossRefGoogle Scholar
Patankar, S.N., Xiao, S.Q., Lewandowski, J.J., and Heuer, A.H.: The mechanism of mechanical alloying of MoSi2. J. Mater. Res. 8(6), 13111316 (1993).CrossRefGoogle Scholar
Zhang, H.F., Li, J., Song, Q.H., and Hu, Z.Q.: Formation and catalytic activity of amorphous Ni50Pd40Si10 alloy powder by mechanical alloying. J. Mater. Res. 13(10), 27792782 (1998).CrossRefGoogle Scholar
Batalla, E. and Zwartz, E.G.: Preparation of Cu–Y–Ba alloys by mechanical alloying. J. Mater. Res. 5(9), 18021805 (1990).CrossRefGoogle Scholar
Miedema, A.R.: On the heat of formation of solid alloys. Less Common Met. 46(1), 6783 (1976).CrossRefGoogle Scholar
Torkan, S., Ataie, A., Abdizadeh, H., and Sheibani, S.: Effect of milling energy on preparation of nano-structured Fe70Si30 alloys. Powder Technol. 267, 145152 (2014).CrossRefGoogle Scholar
Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction (Pearson, New York, NY, USA, 2001).Google Scholar
Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., and Satyanarayana, P.V.: X-ray peak broadening analysis of AA6061100–x–x wt.% Al2O3 nanocomposite prepared by mechanical alloying. Mater. Charac. 62(7), 661672 (2011).CrossRefGoogle Scholar
Suryanarayana, C. and Sharma, S.: Lattice contraction during amorphization by mechanical alloying. Appl. Phys. 104, 203503 (2008).CrossRefGoogle Scholar
Karan, S., Gupta, S.S., and Gupta, S.S.: Compositional dependence of lattice constants in solution grown crystals of mixed ammonium-potassium sulphate by X-ray diffraction. Mater. Lett. 57(26-27), 43284331 (2003).CrossRefGoogle Scholar
Zhao, Y.H., Sheng, H.W., and Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49(2), 365375 (2001).CrossRefGoogle Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations (Pergamon Press, New York, NY, USA, 2001).Google Scholar
Burr, P.A., Wenman, M.R., Gault, B., Moody, M.P., Ivermark, M., Rushton, M.J.D., Preuss, M., Edwards, L., and Grimes, R.W.: From solid solution to cluster formation of Fe and Cr in α-Zr. Nucl. Mater. 467, 320331 (2015).CrossRefGoogle Scholar
Nowroozi, M.A. and Shokrollahi, H.: Magnetic and structural properties of amorphous/nanocrystalline Fe42Ni28Zr8Ta2B10C10 soft magnetic alloy produced by mechanical alloying. Adv. Powder Technol. 24(6), 11001108 (2013).CrossRefGoogle Scholar
Sharma, S. and Suryanarayana, C.: Effect of carbon addition on the glass-forming ability of mechanically alloyed Fe-based alloys. Appl. Phys. 103, 2631 (2008).CrossRefGoogle Scholar
Sharma, S. and Suryanarayana, C.: Effect of Nb on the glass-forming ability of mechanically alloyed Fe–Ni–Zr–B alloys. Scr. Mater. 58(6), 508511 (2008).CrossRefGoogle Scholar
Sahu, A., Maurya, R.S., and Laha, T.: Comparative study on sintering behavior of Al86Ni6Y4.5Co2La1.5 mechanically alloyed amorphous powder and melt-spun ribbon. Adv. Powder Technol. 30(4), 691699 (2019).CrossRefGoogle Scholar
Rizaneh, S., Borhani, G.H., and Tavoosi, M.: Synthesis and characterization of Al (Al2O3-TiB2/Fe) nanocomposite by means of mechanical alloying and hot extrusion processes. Adv. Powder Technol. 26(6), 16931698 (2014).CrossRefGoogle Scholar
Wagih, A.: Mechanical properties of Al-Mg/Al2O3 nanocomposite powder produced by mechanical alloying. Adv. Powder Technol. 26(1), 253258 (2015).CrossRefGoogle Scholar
Slimi, M., Saurina, J., Sunol, J.J., Escoda, L., Farid, M., Greneche, J.M., and Khitouni, M.: Mossbauer and X-ray studies of mechanically alloyed Fe60Ni30Cr10 prepared by high energy ball milling. Adv. Powder Technol. 27(4), 16181624 (2016).CrossRefGoogle Scholar
Aguilar, C., Guzman, D., Castro, F., Martinez, V., Cuevas, F.d.l., Lascano, S., and Muthiah, T.: Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying. Mater. Chem. Phys. 146(3), 493502 (2014).CrossRefGoogle Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill Book Co., New York, NY, USA, 1986).Google Scholar
Baig, A., Fox, J., Young, R., Wang, Z., Hsu, J., Higuchi, W., Chhettry, A., Zhuang, H., and Otsuka, M.: Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif. Tissue Int. 64, 437449 (1999).CrossRefGoogle ScholarPubMed
Rafiei, M., Enayati, M.H., and Karimzadeh, F.: Characterization and formation mechanism of nanocrystalline (Fe,Ti)3Al intermetallic compound prepared by mechanical alloying. Alloys Compd. 480(2), 392396 (2009).CrossRefGoogle Scholar
Rivera Olvera, J.N., Gutierrez Paredes, G.J., Romero Serrano, A., Rivera Lopez, E., Martinez Franco, E., Tamayo Meza, P., and Barriga Arceo, L.D.: Synthesis and characterization of a MoWC-WC-NiC nanocomposite via mechanical alloying and sintering. Powder Technol. 271, 292300 (2015).CrossRefGoogle Scholar
Porter, D.A. and Easterling, K.E.: Phases Transformations in Metal and Alloys (Nelson Thornes, Cheltenham, UK, 2004).Google Scholar
Miedema, A.R.: The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys. Less Common Met. 32(1), 117136 (1973).CrossRefGoogle Scholar
Miedema, A.R.: On the heat of formation of solid alloys. Less Common Met. 41(2), 283398 (1975).CrossRefGoogle Scholar
Deboer, F., Miedema, A., and Chatel, P.D.: Cohesion in alloys-fundamentals of a semi empirical model. Physica B 100(1), 128 (1980).Google Scholar
Midema, A.R., Loeff, A.P., and Weeber, A.: Diagrams of formation enthalpies of amorphous alloys in comparison with the crystalline solid solution. Less Common Met. 140, 299305 (1988).Google Scholar
Wang, W.C., Li, J.H., Yan, H.F., and Liu, B.X.: Thermodynamic model proposed for calculating the standard formation enthalpies of ternary alloy systems. Scr. Mater. 56(11), 975978 (2007).CrossRefGoogle Scholar
Niessen, A.K. and Midema, A.R.: The enthalpy effect on forming diluted solid metals. Phys. Chem. 87, 717725 (1983).Google Scholar
Zhang, B. and Jesser, W.A.: Formation energy of ternary alloy systems calculated by an extended Miedema model. Physica B 315, 123132 (2002).CrossRefGoogle Scholar
Mousavi, T., Abbasi, M.H., and Karimzadeh, F.: Thermodynamic analysis of NiTi formation by mechanical alloying. Mater. Lett. 69(9-10), 786788 (2009).CrossRefGoogle Scholar