Skip to main content Accessibility help

Microstructural evolution during decomposition and crystallization of the Cu60Zr20Ti20 amorphous alloy

  • A. Concustell (a1), Á. Révész (a1), S. Suriñach (a1), L.K. Varga (a2), G. Heunen (a3) and M.D. Baró (a1)...


The effect of continuous heating and isothermal heat treatments on ductile Cu60Zr20Ti20 amorphous ribbons was monitored by differential scanning calorimetry, x-ray diffraction, synchrotron radiation transmission, and high-resolution transmission electron microscopy. Upon continuous heating, the alloy exhibited a glass transition, followed by a supercooled liquid region and two exothermic crystallization stages. Decomposition of the amorphous phase was also observed. The first crystallization stage resulted in the formation of a nanocomposite structure with hexagonal Cu51Zr14 particles embedded in the amorphous matrix, while in the second crystallization stage hexagonal Cu2TiZr-like phase was precipitated. The released enthalpies were 19 J/g and 30 J/g for each crystallization stage. Crystallization kinetics was studied by the classical nucleation theory. Deviations from the Johnson–Mehl–Avrami–Kolmogorov theory may be explained by the contribution of the decomposition of the amorphous matrix.


Corresponding author

b)Address all correspondence to this author. e-mail:


Hide All
1Lin, X.H. and Johnson, W.L.: J. Appl. Phys. 78, 6541 (1995).
2He, Y., Schwarz, R.B., Mandrus, D. and Jacobson, L.: J. Non-Cryst. Solids 205–207, 602 (1996).
3Johnson, W.L.: MRS Bull. 24 1042 (1999).
4Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Acta Mater. 49, 2645 2001;
Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., J. Non-Cryst. Solids 304, 200 (2002).
5Révész, Á., Concustell, A., Varga, L.K., Suriñnach, S. and Baró, M.D.: J. Mater. Sci. 2004 (in press).
6Inoue, A., Chen, S. and Masumoto, T.: Mater. Sci. Eng. A 346–350, 346 1994;
Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67 1544 (1995);
Antonione, C., Spriano, S., Rizzi, P., Baricco, M., and Battezzati, L., J. Non-Cryst. Solids 232–234 127 (1998).
7Liu, W., Johnson, W.L., Schneider, S., Geyer, U. and Thiyagarajan, P.: Phys. Rev. B 59, 11755 1999;
Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T., and Inoue, A., Appl. Phys. Lett. 82, 4041 (2003).
8Geyer, U., Schneider, S., Jonhson, W.L., Qiu, Y., Tombrello, T.A. and Macht, M.P.: Phys. Rev. Lett. 75, 2364 (1995).
9Desré, P.J.: Philos. Mag. Lett. 80, 401 2000;
Kelton, K.F., Philos. Mag. Lett. 77, 337 (1998).
10Kissinger, H.E.: Anal. Chem. 29, 1702 (1957).
11Young, R.A.: The Rietveld Method (Oxford University Press, New York, 1995);
Lutterotti, L. and Scardi, P., J. Appl. Cryst. 23, 246 1990; L. Lutterotti and S. Gialanella, Acta Mater. 46, 101 (1997).
12Kvick, A. and Wulff, M.: Rev. Sci. Instrum. 63, 1073 1992; M. Krumrey, A. Kvick, and W. Schwegle, Rev. Sci. Instrum. 66, 1715 1995; J. Susini, R. Baker, M. Krumrey, W. Schwegle, and A. Kvick, Rev. Sci. Instrum. 66, 2048 (1995).
13Johnson, M.W.A. and Mehl, K.F.: Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).
14Avrami, M.: J. Chem. Phys. 7 1103 (1939); M. Avrami, J. Chem. Phys. 8, 212 (1940).
15Avrami, M.: J. Chem. Phys. 9, 177 (1941).
16Kolmogorov, A.N.: Izv. Akad. Nauk USSR. Ser. Matem. 3, 355 (1937).
17Christian, J.W.: The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).
18Révész, Á., Varga, L.K., Suriñach, S. and Baró, M.D.: J. Mater. Res. 17, 2140 (2002).
19Aronin, A.S., Abrosimova, G.E., Gurov, A.F., Yu, V. Kiŕanov and Molokanov, V.V.: Mater. Sci. Eng. A 304–306, 375 (2001).
20Liu, X.D., Nagumo, M. and Umemoto, M.: Mater. Sci. Eng. A 252, 179 (1998).
21Botstein, O. and Rabinkin, A.: Mater. Sci. Eng. A 188, 305 (1994).
22Arroyave, R., Eagar, T.W. and Kaufman, L.: J. Alloys Comp. 351, 158 (2003).
23Jiang, J. Z., Yang, B., Saksl, K., Franz, H. and Pryds, N.: J. Mater. Res. 18, 895 (2003).
24Louzguine, D.V. and Inoue, A.: J. Mater. Res. 17, 2112 (2002).
25Glade, S.C., Löffler, J.F., Bossuyt, S., Johnson, W.L. and Miller, M.K.: J. Appl. Phys. 89, 1573 (2001).
26Foley, J.C., Allen, D.R. and Perpezko, J.H.: Scr. Mater. 35(5), 655 (1996); M. Calin and U. Köster, Mater. Sci. Forum 269–272 749 (1998).
27Révész, Á., Donnadieu, P., Simon, J.P., Guyot, P. and Ochin, P.: Philos. Mag. Lett. 81, 767 (2001).
28Xing, L.Q., Bertrand, C., Dallas, J.P. and Cornet, M.: Mater. Sci. Eng. A 241, 216 (1998).
29Löffler, J.F. and Johnson, W.L.: Appl. Phys. Lett. 76, 3395 (2000).
30Barbee, T.W. Jr.Walmsley, R.G., Marshall, A.F., Keith, D.L. and Stevenson, D.A.: Appl. Phys. Lett. 38, 132 (1981).
31Schultz, R., Samwer, K. and Johnson, W.L.: J. Non-Cryst. Solids 62, 997 (1984).
32Li, C., Saida, J., Matsushita, M. and Inoue, A.: Mater. Sci. Eng. A 304–306, 380 (2001).
33Liu, W. and Johnson, W.L.: J. Mater. Res. 11, 2388 (1996).
34Woychik, C.G. and Massalski, T.B.: Bd. 79, 149 (1988).


Microstructural evolution during decomposition and crystallization of the Cu60Zr20Ti20 amorphous alloy

  • A. Concustell (a1), Á. Révész (a1), S. Suriñach (a1), L.K. Varga (a2), G. Heunen (a3) and M.D. Baró (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed