Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T11:02:57.800Z Has data issue: false hasContentIssue false

A micromechanistic model of microstructure development during the combustion synthesis process

Published online by Cambridge University Press:  03 March 2011

Yangsheng Zhang
Affiliation:
Institute for Self-Propagating High-Temperature Synthesis, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
Institute for Self-Propagating High-Temperature Synthesis, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Abstract

The influence of the key nucleation and grain growth parameters on (i) the evolution of the microstructure of the product phase (on a microscopic level) and (ii) the combustion synthesis process (on a macroscopic level) were investigated for the combustion synthesis process in the Nb-C system. This work is an integral part of the continuing effort1–3 to develop a more complete theoretical model for combustion synthesis processes in general. In particular, the nucleation and growth of the NbC(s) product phase from the supersaturated liquid Nb/C mixture that appears briefly during the combustion synthesis process was treated in a greater detail by using a decidedly more sophisticated treatment of the nucleation and growth process (as developed in the field of rapid solidification and welding). It was shown that the microstructure of the NbC(s) product phase, including the evolution of the grain size and the size distribution, and the development of the grain's morphology, as well as the combustion wave velocity, are significantly influenced by the total number density of the nucleation sites, nmax, that are present in the system. The grain size distribution was shown to possess a monosize distribution, since during the combustion synthesis process the rate of increase of the degree of local undercooling was very high so that the nucleation process took place (locally) during a very brief period of time. This work provides a sound basis for developing a better control of the microstructure, and for a better understanding and interpretation of the results of related experimental studies.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 25922604 (1994).CrossRefGoogle Scholar
2Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 26052619 (1994).CrossRefGoogle Scholar
3Zhang, Y. and Stangle, G. C., unpublished.Google Scholar
4Combustion and Plasma Synthesis ofHigh-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990).Google Scholar
5Varma, A. and Lebrat, J. P., Chem. Eng. Sci. 47, 21792194 (1992).CrossRefGoogle Scholar
6Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 279365 (1989).CrossRefGoogle Scholar
7Merzhanov, A. G., a Keynote Talk presented at The International Symposium on Combustion and Plasma Synthesis of High-Temperature Materials, San Francisco, CA, Oct. 23–26, 1988.Google Scholar
8Low, I. M., J. Mater. Sci. Lett. 11, 715718 (1992).CrossRefGoogle Scholar
9Deevi, S. C., Mater. Sci. Eng. A149, 241251 (1992).CrossRefGoogle Scholar
10Hoke, D. A., Meyers, M. A., Meyer, L. W., and Gray, G. T. III, Metall. Trans. A 23, 7786 (1992).CrossRefGoogle Scholar
11LaSalvia, J. C., Meyer, L. W., and Meyers, M. A., J. Am. Ceram. Soc. 75, 592602 (1992).CrossRefGoogle Scholar
12Kecskes, L. J., Kottke, T., Netherwood, P. H. Jr., Benck, R. F., and Niiler, A., Ballistic Research Laboratory Report, BRL-TR-3133 (1990).Google Scholar
13Bhattacharya, A. K., J. Am. Ceram. Soc. 75, 16781681 (1992).CrossRefGoogle Scholar
14Lebrat, J-P., Varma, A., and Miller, A. E., Metall. Trans. A 23, 6976 (1992).CrossRefGoogle Scholar
15Yi, H. C., Moore, J. J., and Petric, A., Metall. Trans. A 23, 5964 (1992).CrossRefGoogle Scholar
16Matson, D. M. and Munir, Z. A., Mater. Sci. Eng. A153, 700705 (1992).CrossRefGoogle Scholar
17Krueger, B. R., Mutz, A. H., and Vreeland, T. Jr., Metall. Trans. A 23, 5558 (1992).CrossRefGoogle Scholar
18Song, I. and Thadhani, N. N., Metall. Trans. A 23, 4148 (1992).CrossRefGoogle Scholar
19Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Syn. Proc. 1, 93100 (1993).Google Scholar
20Odawara, O. and Ikeuchi, J., J. Am. Ceram. Soc. 69, C80C81 (1986).Google Scholar
21Odawara, O., Int. J. Self-Propagating High-Temperature Synthesis 1, 160167 (1992).Google Scholar
22Coy, M. A., M.S. Thesis, Alfred University, Alfred, NY (1993).Google Scholar
23Rabin, B. H., Korth, G. E., and Williamson, R. L., J. Am. Ceram. Soc. 73, 21562157 (1990).CrossRefGoogle Scholar
24Rice, R. W., Richardson, G. Y., Kunetz, J. M., Schroeter, T., and McDonough, W. J., Ceram. Eng. Sci. Proc. 7, 736750 (1986).Google Scholar
25Zhou, Z. and Stangle, G. C., J. Mater. Sci. (1995, in press).Google Scholar
26Dunmead, S. D., Ready, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 23182324 (1989).CrossRefGoogle Scholar
27Munir, Z. A., Metall. Trans. A 23, 713 (1992).CrossRefGoogle Scholar
28Rabin, B. H. and Wright, R. N., Metall. Trans. A 23, 3540 (1992).CrossRefGoogle Scholar
29Rice, R. W., J. Mater. Sci. 26, 65336541 (1991).CrossRefGoogle Scholar
30Dunmead, S. D., Munir, Z. A., Holt, J. B., and Kingman, D. D., in Combustion and Plasma Synthesis ofHigh-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, Inc., New York, 1990), pp. 229237.Google Scholar
31Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24, 617628 (1993).CrossRefGoogle Scholar
32He, C., Ph.D. Dissertation, Alfred University, Alfred, NY (in progress).Google Scholar
33Vecchio, K. S., LaSalvia, J. C., Meyers, M. A., and Gray, G. T. III, Metall. Trans. A 23, 8797 (1992).CrossRefGoogle Scholar
34Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
35Lesoult, G., in Metals Handbook, Vol. 15, Casting (ASM INTERNATIONAL, Metals Park, OH, 1988), pp. 101182.Google Scholar
36Kurz, W. and Fisher, D. J., Fundamentals of Solidification (Trans. Tech., Switzerland, 1984).Google Scholar
37Rappaz, M. and Stefanescu, D. M., in Metals Handbook, Vol. 15, Casting (ASM INTERNATIONAL, Metals Park, OH, 1988), pp. 883891.Google Scholar
38Stefanescu, D. M., Abbaschian, G. J., and Bayuzick, R. J., Solidification Processing of Eutectic Alloys (The Metallurgical Society, Warrendale, PA, 1988).Google Scholar
39Feuerbacher, B., Mater. Sci. Rep. 4, 140 (1989).CrossRefGoogle Scholar
40Rappaz, M. and Stefanescu, D. M., in Solidification Processing of Eutectic Alloys, edited by Stefanescu, D. M., Abbaschian, G. J., and Bayuzick, R. J. (The Metallurgical Society, Warrendale, PA, 1988), pp. 133151.Google Scholar
41Rappaz, M., Int. Mater. Rev. 34, 93123 (1989).CrossRefGoogle Scholar
42Schmalzried, H., Solid State Reactions (Verlag Chemie, Deerfleld Beach, FL, 1981).Google Scholar
43Chalmers, B., Principles of Solidification (Wiley, New York, 1964).Google Scholar
44Minkoff, I., Solidification and Cast Structure (Wiley, New York, 1986).Google Scholar
45Hunt, J. D., Mater. Sci. Eng. A A65, 7583 (1984).CrossRefGoogle Scholar
46Witzke, S., Riquet, J-P., and Durand, F., Mem. Sci. Rev. Met. 12, 701714 (1979).Google Scholar
47Esaka, H. and Kurz, W., Z. Metallic. 76, 127133 (1985).Google Scholar
48Gokhale, A. B., Sarkar, G., Abbaschian, G. J., Haygarth, J. C., Wojcik, C., and Lewis, R. E., in Solidification Processing of Eutectic Alloys, edited by Stefanescu, D. M., Abbaschian, G. J., and Bayuzick, R. J. (The Metallurgical Society, Warrendale, PA, 1988), pp. 177197.Google Scholar
49Thevoz, Ph., Desbiolles, J. L., and Rappaz, M., Metall. Trans. A 20, 311322 (1989).CrossRefGoogle Scholar
50Maxwell, I. and Hellawell, A., Acta Metall. 23, 229237 (1975).CrossRefGoogle Scholar
51Rappaz, M. and Thevoz, Ph., Acta Metall. 35, 14871497 (1987).CrossRefGoogle Scholar
52Trivedi, R. and Kurz, W., in Solidification Processing of Eutectic Alloys, edited by Stefanescu, D. M., Abbaschian, G. J., and Bayuzick, R. J. (The Metallurgical Society, Warrendale, PA, 1988), pp. 334.Google Scholar
53Lipton, J., Kurz, W., and Trivedi, R., Acta Metall. 35, 957964 (1987).CrossRefGoogle Scholar
54Trivedi, R., Lipton, J., and Kurz, W., Acta Metall. 35, 965970 (1987).CrossRefGoogle Scholar
55Kurz, W., Giovanola, B., and Trivedi, R., Acta Metall. 34, 823830 (1986).CrossRefGoogle Scholar
56Rappaz, M. and PhThevoz, ., Acta Metall. 35, 29292933 (1987).CrossRefGoogle Scholar
57Rappaz, M. and Gandin, C-A., Mater. Res. Soc. Bull. XIX, 2024 (1994).CrossRefGoogle Scholar
58Brown, S. G. R. and Spittle, J. A., Mater. Sci. Tech. 5, 362368 (1989).CrossRefGoogle Scholar
59Ch-A. Gandin, Rappaz, M., and Tintillier, R., Metall. Trans. A 24, 467479 (1993).CrossRefGoogle Scholar
60Spittle, J. A. and Brown, S. G. R., Acta Metall. 37, 18031810 (1989).CrossRefGoogle Scholar
61Rappaz, M. and Gandin, Ch-A., Acta Metall. 41, 345360 (1993).CrossRefGoogle Scholar
62David, S. A. and Vitek, J. M., in Mathematical Modeling of Weld Phenomena, edited by Cerjak, H. and Easterling, K. E. (Cambridge University Press, Cambridge, 1993), pp. 4159.Google Scholar
63Easterling, K. E., in Mathematical Modeling of Weld Phenomena, edited by Cerjak, H. and Easterling, K. E. (Cambridge University Press, Cambridge, 1993), pp. 183200.Google Scholar
64Hoadley, A. F. A., Picasso, M., and Rappaz, M., in Mathematical Modeling of Weld Phenomena, edited by Cerjak, H. and Easterling, K. E. (Cambridge University Press, Cambridge, 1993), pp. 6071.Google Scholar
65David, S. A. and Vitek, J. M., in The Metal Science of Joining, edited by Cieslak, M. J., Perepezko, J. H., Kang, S., and Glicksman, M. E. (The Minerals, Metals & Materials Society, Cincinnati, OH, 1992), pp. 19.Google Scholar
66David, S. A., Vitek, J. M., Rappaz, M., and Boatner, L. A., Metall. Trans. A 21, 17531766 (1990).CrossRefGoogle Scholar
67Brooks, J. A., Baskes, M. I., and Greulich, F. A., Metall. Trans. A 22, 915926 (1991).CrossRefGoogle Scholar
68Zacharia, T., David, S. A., Vitek, J. M., and Debroy, T., Metall. Trans. A 20, 957967 (1989).CrossRefGoogle Scholar
69Rappaz, M., David, S. A., Vitek, J. M., and Boatner, L. A., Metall. Trans. A 20, 11251138 (1989).CrossRefGoogle Scholar
70Rappaz, M., David, S. A., Vitek, J. M., and Boatner, L. A., Metall. Trans. A 21, 17671782 (1990).CrossRefGoogle Scholar
71Rappaz, M., Vitek, J. M., David, S. A., and Boatner, L. A., Metall. Trans. A 24, 14331446 (1993).CrossRefGoogle Scholar
72Elmer, J. W., in The Metal Science of Joining, edited by Cieslak, M. J., Perepezko, J. H., Kang, S., and Glicksman, M. E. (The Minerals, Metals & Materials Society, Cincinnati, OH, 1992), pp. 123133.Google Scholar
73Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions (National Bureau of Standards Applied Mathematics Series, No. 55, 1964).Google Scholar
74Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444451 (1964).CrossRefGoogle Scholar
75Langer, J. S. and Muller-Krumbhaar, H., Acta Metall. 26, 16811687 (1978).CrossRefGoogle Scholar
76Langer, J. S. and Muller-Krumbhaar, H., Acta Metall. 26, 16891695 (1978).CrossRefGoogle Scholar
77Muller-Krumbhaar, H. and Langer, J. S., Acta Metall. 26, 16971708 (1978).CrossRefGoogle Scholar
78Kurz, W. and Fisher, D. J., Acta Metall. 29, 1120 (1981).CrossRefGoogle Scholar
79Voorhees, P. W., J. Stat. Phys. 38, 231252 (1985).CrossRefGoogle Scholar
80Beenakker, C. W. J. and Ross, J., J. Chem. Phys. 83, 47104714 (1985).CrossRefGoogle Scholar
81Enomoto, Y., Kawasaki, K., and Tokuyama, M., Acta Metall. 35, 907913 (1987).CrossRefGoogle Scholar
82Voorhees, P. W.Metall. Trans. A 21, 2737 (1990).CrossRefGoogle Scholar
83Anderson, M. P., Srolovitz, D. J., Grest, G. S., and Sahni, P. S., Acta Metall. 32, 783791 (1984).CrossRefGoogle Scholar
84Srolovitz, D. J., Anderson, M. P., Sahni, P. S., and Grest, G. S., Acta Metall. 32, 793802 (1984).CrossRefGoogle Scholar
85Srolovitz, D. J., Anderson, M. P., Grest, G. S., and Sahni, P. S., Acta Metall. 32, 14291438 (1984).CrossRefGoogle Scholar
86Grest, G. S., Srolovitz, D. J., and Anderson, M. P., Acta Metall. 33, 509520 (1985).CrossRefGoogle Scholar
87Srolovitz, D. J., Grest, G. S., and Anderson, M. P., Acta Metall. 33, 22332247 (1985).CrossRefGoogle Scholar
88Batchelor, G. K. and O'Brien, R. W., Proc. R. Soc. London A 355, 313333 (1977).Google Scholar
89Ridgeway, K. and Tarbuk, K. J., Br. Chem. Eng. 12, 384388 (1967).Google Scholar
90Viskanta, R. and Anderson, E. E., Adv. Heat Transfer 11, 317441 (1975).CrossRefGoogle Scholar
91Goedecke, G. H., J. Opt. Soc. Am. 67, 13391348 (1977).CrossRefGoogle Scholar
92Wang, K. Y. and Tien, C. L., J. Quant. Spectrosc. Radiat. Transfer 30, 213223 (1983).CrossRefGoogle Scholar
93Drolen, B. L. and Tien, C. L., J. Thermophysics 1, 6368 (1987).CrossRefGoogle Scholar
94Flamant, G., Menigault, T., and Schwander, D., J. Heat Transfer 110, 463467 (1988).CrossRefGoogle Scholar
95Viskanta, R. and Menguc, M. P., Appl. Mech. Rev. 42, 241259 (1989).CrossRefGoogle Scholar
96Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1979).Google Scholar
97Scheidegger, A. E., The Physics of Flow through Porous Media, 3rd ed. (University of Toronto Press, Toronto, 1974).Google Scholar
98Cussler, E. L., Mass Transfer (McGraw-Hill, New York, 1988).Google Scholar
99Turnbull, D., J. Chem. Phys. 18, 198203 (1950).CrossRefGoogle Scholar