Skip to main content Accessibility help
×
Home

Microcompression study of Al-Nb nanoscale multilayers

  • Youbin Kim (a1), Arief Suriadi Budiman (a2), J. Kevin Baldwin (a2), Nathan A. Mara (a2), Amit Misra (a2) and Seung Min Han (a3)...

Abstract

Microcompression tests were performed on the Al/Nb multilayers of incoherent interfaces with the layer thicknesses of 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb. The Al-Nb multilayers showed increase in strength as the layer thickness was reduced; the average flow stresses at 5% plastic strain from the 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb layer thickness specimens were determined to be 2.1 GPa and 1.4 GPa respectively. The results from this Al-Nb microcompression study were compared with those of the previous report on Cu-Nb multilayer microcompression results that indicated that the flow stresses of the Al-Nb multilayer are lower than those of Cu-Nb with the same bilayer spacing. The observed difference in strength was attributed to a potential difference in the interfacial strength of the two incoherent multilayer systems.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: smhan01@kaist.ac.kr

References

Hide All
1.Anderson, P.M. and Li, Z.: A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Mater. Sci. Eng. 319, 182 (2001).
2.Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009).
3.Wang, Y.C., Misra, A., and Hoagland, R.G.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).
4.Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010).
5.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).
6.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X 5 Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).
7.Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb film. Philos. Mag. 84, 1021 (2004).
8.Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).
9.Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D., and Kung, H.: Dislocation mechanisms and symmetric slip in rolled nanoscale metallic multilayers. Acta Mater. 52, 2387 (2004).
10.Wang, J., Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).
11.Anderson, P.M., Bingert, J.F., Misra, A., and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51, 6059 (2003).
12.Han, S.M., Phillips, M.A., and Nix, W.D.: Study of strain softening behavior of Al–Al3Sc multilayers using microcompression testing. Acta Mater. 57, 4473 (2009).
13.Phillips, M.A., Clemens, B.M., and Nix, W.D.: A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater. 51, 3157 (2003).
14.Phillips, M.A., Clemens, B.M., and Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 (2003).
15.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).
16.Budiman, A.S., Li, N., Wei, Q., Baldwin, J.K., Xiong, J., Luo, H., Trugman, D., Jia, Q.X., Tamura, N., Kunz, M., Chen, K., and Misra, A.: Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 519, 4137 (2011).
17.Anderson, P.M. and Li, C.: Hall-Petch relations for multilayered materials. Nanostruct. Mater. 5, 349 (1995).
18.Friedman, L.H. and Chrzan, D.C.: Scaling theory of the Hall-Petch relation for multilayers. Phys. Rev. Lett. 81, 27151998 (1998).
19.Pande, C.S., Masumura, R.A., and Armstrong, R.W.: Pile-up based Hall-Petch relation for nanoscale materials. Nanostruct. Mater. 2, 323 (1993).
20.Liu, H.W. and Gao, Q.: The equivalence between dislocation pile-ups and cracks. Theor. Appl. Fract. Mech. 12, 195 (1990).
21.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. 82, 643 (2002).
22.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).
23.Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545 (1998).
24.Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).
25.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 (2006).
26.Han, S.M., Saha, R., Nix, W.D.: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, 1571 (2006).
27.Han, S.M., Saha, R., Banerjee, R., Viswanathan, G.B., Clemens, B.M., and Nix, W.D.: Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation. Acta Mater. 53, 2059 (2005).
28.Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).
29.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A low for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).
30.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47, 1239 (1999).
31.Huanga, Y., Gao, H., Nix, W.D., and Hutchinson, J.W.: Mechanism-based strain gradient plasticity-II. Analysis. J. Mech. Phys. Solids 48, 99 (2000).
32.Huang, Y., Xue, Z., Gao, H., Nix, W.D., and Xia, Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res. 15, 1786 (2000).
33.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
34.Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).
35.Han, S.M., Bozorg-Grayeli, T., Groves, J.R., and Nix, W.D.: Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63, 1153 (2010).
36.Han, S.M., Xie, C., and Cui, Y.: Microcompression of fused silica nanopillars synthesized using reactive ion etching. Nanosci. Nanotechnol. Lett. 2, 1 (2011).
37.Fu, E.G., Li, N., Misra, A., Hoagland, R.G., Wang, H., and Zhang, X.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283 (2008).
38.Tabor, D.: The Hardness of Metal (Clarendon Press, Oxford, United Kingdom, 1987) p. 52.
39.Yu-Zhang, K., Embury, J.D., Han, K., and Misra, A.: Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu–Nb multilayers. Philos. Mag. 88, 2559 (2008).
40.Li, N., Wang, J., Huang, J.Y., Misra, A., and Zhang, X.: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 63, 363 (2010).

Keywords

Related content

Powered by UNSILO

Microcompression study of Al-Nb nanoscale multilayers

  • Youbin Kim (a1), Arief Suriadi Budiman (a2), J. Kevin Baldwin (a2), Nathan A. Mara (a2), Amit Misra (a2) and Seung Min Han (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.