Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T15:37:40.225Z Has data issue: false hasContentIssue false

The Meyer–Neldel rule in amorphous TiO2 films with different Fe content

Published online by Cambridge University Press:  03 July 2012

Diana Mardare*
Affiliation:
Department of Physics, “Alexandru Ioan Cuza” University, Faculty of Physics, 700506-Iasi, Romania
Abdullah Yildiz
Affiliation:
Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, 06030, Ankara, Turkey
Radu Apetrei
Affiliation:
“Alexandru Ioan Cuza” University, Faculty of Physics, 700506-Iasi, Romania
Petronela Rambu
Affiliation:
“Alexandru Ioan Cuza” University, Faculty of Physics, 700506-Iasi, Romania
Daniel Florea
Affiliation:
“Alexandru Ioan Cuza” University, Faculty of Physics, 700506-Iasi, Romania
Nicoleta Georgiana Gheorghe
Affiliation:
National Institute of Materials Physics, 077125-Magurele-Ilfov, Romania
Dan Macovei
Affiliation:
National Institute of Materials Physics, 077125-Magurele-Ilfov, Romania
Cristian Mihail Teodorescu
Affiliation:
National Institute of Materials Physics, 077125-Magurele-Ilfov, Romania
Dumitru Luca
Affiliation:
“Alexandru Ioan Cuza” University, Faculty of Physics, 700506-Iasi, Romania
*
a)Address all correspondence to this author. e-mail: dianam@uaic.ro
Get access

Abstract

Amorphous titania thin films with increasing Fe content have been prepared by RF magnetron sputtering. X-ray absorption spectroscopy revealed modifications of both local structures/environment of the Ti and Fe atoms, with formation of phases containing amorphous material and a magnetite-like phase. The temperature dependence of the electrical conductivity of the films was investigated for temperatures higher than half of the Debye temperature (T > 391 K). It was found that the electrical conductivity in the amorphous Fe/TiO2 films obeys the Meyer–Neldel rule. The origin of this behavior is explained on the basis of the multiphonon-assisted hopping model.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Quan, X., Zhao, Q., Tan, H., Sang, X., Wang, F., and Dai, Y.: Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process. Mater. Chem. Phys. 114, 90 (2009).CrossRefGoogle Scholar
2.Seeley, Z-M., Bandyopadhyay, A., and Bose, S.: Titanium dioxide thin films for high temperature gas sensors. Thin Solid Films 519, 434 (2010).CrossRefGoogle Scholar
3.Mardare, D., Iftimie, N., Crisan, M., Raileanu, M., Yildiz, A., Coman, T., Pomoni, K., and Vomvas, A.: Electrical conduction mechanism and gas sensing properties of Pd-doped TiO2 films. J. Non-Cryst. Solids 357, 1774 (2011).CrossRefGoogle Scholar
4.Jarernboon, W., Pimanpang, S., Maensiri, S., Swatsitang, E., and Amornkitbamrung, V.: Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application. Thin Solid Films 517, 4663 (2009).CrossRefGoogle Scholar
5.Euvananont, C., Junin, C., Inpor, K., Limthongkul, P., and Thanachayanont, C.: TiO2 optical coating layers for self-cleaning applications. Ceram. Int. 34, 1067 (2008).CrossRefGoogle Scholar
6.Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001).CrossRefGoogle ScholarPubMed
7.Singh, A-P., Kumari, S., Shrivastav, R., Dass, S., and Satsangi, V-R.: Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. Int. J. Hydrogen Energy 33, 5363 (2008).CrossRefGoogle Scholar
8.Fan, L., Dongmei, J., Yan, L., and Xueming, M.: Magnetism of Fe-doped TiO2 milled in different milling atmospheres. Physica B 403, 2193 (2008).Google Scholar
9.Mardare, D., Iacomi, F., and Luca, D.: Substrate and Fe-doping effects on the hydrophilic properties of TiO2 thin films. Thin Solid Films 515, 6474 (2007).CrossRefGoogle Scholar
10.Gurman, S.J.: Interpretation of EXAFS data. J. Synchrotron Radiat. 2, 56 (1995).CrossRefGoogle ScholarPubMed
11.Strunk, J., Vining, W-C., and Bell, A-T.: A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J. Phys. Chem. C 114, 16937 (2010).CrossRefGoogle Scholar
12.Farges, F., Brown, G.E. Jr., and Rehr, J.J.: Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Phys. Rev. B 56, 1809 (1997).CrossRefGoogle Scholar
13.Teodorescu, C.M., Esteva, J.M., Womes, M., El Afif, A., Karnatak, R.C., Flank, A.M., and Lagarde, P.: Sodium 1s photoabsorption spectra of Na and NaF clusters deposited in rare gas matrices. J. Electron. Spectrosc. Relat. Phenom. 106, 233 (2000).CrossRefGoogle Scholar
14.Teodorescu, C.M., El Afif, A., Esteva, J.M., and Karnatak, R.C.: Na 1s excitations in vapor and solid sodium halides. Phys. Rev. B 63, 233106 (2001).CrossRefGoogle Scholar
15.de Groot, F., Vankó, G., and Glatzel, P.: The 1s x-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21, 104207 (2009).CrossRefGoogle ScholarPubMed
16.Matsuo, S., Sakaguchi, N., and Wakita, H.: Pre-edge features of Ti K-edge x-ray absorption near-edge structure for the local structure of sol-gel titanium oxides. Anal. Sci. 21, 805 (2005).CrossRefGoogle ScholarPubMed
17.Sakurai, S., Sasaki, S., Okube, M., Ohara, H., and Toyoda, T.: Cation distribution and valence state in Mn–Zn ferrite examined by synchrotron x-rays. Physica B 403, 3589 (2008).CrossRefGoogle Scholar
18.Dragoi, C., Gheorghe, N.G., Lungu, G.A., Trupina, L., Ibanescu, A.G., and Teodorescu, C.M.: X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr, Ti)O3−δ. Phys. Status Solidi A 209, 1049 (2012).CrossRefGoogle Scholar
19.Gheorghe, N.G., Husanu, M.A., Lungu, G.A., Costescu, R.M., Macovei, D., Popescu, D.G., and Teodorescu, C.M.: Magnetism and atomic structure in Fe/Si(001) interfaces. Dig. J. Nanomater. Bios. (2012, accepted).Google Scholar
20.Yildiz, A., Iacomi, F., and Mardare, D.: Polaron transport in TiO2 thin films. J. Appl. Phys. 108(8), 083701 (2010).CrossRefGoogle Scholar
21.Mardare, D. and Rusu, G.I.: Electrical conduction mechanism in polycrystalline titanium oxide thin films. J. Non-Cryst. Solids 356(28–30), 1395 (2010).CrossRefGoogle Scholar
22.Meyer, W. and Neldel, H.: Relation between the energy constant and the quantity constant in the conductivity–temperature formula of oxide semiconductors. Z. Tech. Phys. 12, 588 (1937).Google Scholar
23.Coutts, T.J. and Pearsall, N.M.: Meyer–Neldel rule in solar cells. Appl. Phys. Lett. 44(1), 134 (1984).CrossRefGoogle Scholar
24.Stabler, D.L. and Wronski, C.R.: Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51(6), 3262 (1980).CrossRefGoogle Scholar
25.Rosenberg, B., Bhowmik, B.B., Harder, H.C., and Postow, E.: Pre-exponential factor in semiconducting organic substances. J. Chem. Phys. 49(9), 4108 (1968).CrossRefGoogle Scholar
26.Shimakawa, K. and Abdel-Wahab, F.: The Meyer–Neldel rule in chalcogenide glasses. Appl. Phys. Lett. 70(5), 652 (1997).CrossRefGoogle Scholar
27.Crandall, R.S.: Defect relaxation in amorphous silicon: Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect. Phys. Rev. B 43(5), 4057 (1991).CrossRefGoogle ScholarPubMed
28.Yoon, B.G., Lee, C., and Jang, J.: Effect of the statistical shift on the anomalous conductivities of n-type hydrogenated amorphous silicon. J. Appl. Phys. 60(2), 673 (1986).CrossRefGoogle Scholar
29.Yelon, A. and Movaghar, B.: The Meyer–Neldel conductivity prefactor for chalcogenide glasses. Appl. Phys. Lett. 71(24), 3549 (1997).CrossRefGoogle Scholar
30.Han, X.J., Bergqvist, L., Dederichs, P.H., Müller-Krumbhaar, H., Christie, J.K., Scandolo, S., and Tangney, P.: Polarizable interatomic force field for TiO2 parametrized using density functional theory. Phys. Rev. B 81(13), 134108 (2010).CrossRefGoogle Scholar
31.Mott, N.F.: Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1(1), 1 (1968).CrossRefGoogle Scholar
32.Emin, D. and Holstein, T.: Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36(6), 323 (1976).CrossRefGoogle Scholar
33.Emin, D.: Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Adv. Phys. 24(3), 305 (1975).CrossRefGoogle Scholar
34.Kemeny, G. and Rosenberg, B.: Small polarons in organic and biological semiconductors. J. Chem. Phys. 53(9), 3549 (1970).CrossRefGoogle ScholarPubMed
35.Robertson, N. and Friedman, L.: Non-radiative transitions. Philos. Mag. 33(5), 753 (1976).CrossRefGoogle Scholar
36.Shimakawa, K.: Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Philos. Mag. B 60(3), 377 (1989).CrossRefGoogle Scholar
37.Sakata, H., Sega, K., and Chaudhuri, B.K.: Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses. Phys. Rev. B 60(5), 3230 (1991).CrossRefGoogle Scholar