Skip to main content Accessibility help
×
Home

Metastability in high-entropy alloys: A review

  • Shaolou Wei (a1), Feng He (a2) and Cemal Cem Tasan (a1)

Abstract

Classical alloy design strategies often aim to benefit from metastability. Examples are numerous: metastable transformation- and twinning-induced plasticity steels, cobalt or titanium based alloys, age hardenable aluminum alloys, and severe plastic deformed nanostructured copper. In each of these cases, superior engineering property combinations are achieved by exploring limits of stability. For the case of high-entropy alloys (HEAs), on the other hand, majority of present research efforts focus on exploring compositions that would yield stable single-phase structures. HEA metastability and its effects on microstructure and property development constitute only a relatively small fraction of ongoing work. To help motivate and guide a corresponding shift in HEA research efforts, here in this paper, we provide an overview of the research activities on metastability in HEAs. To this end, we categorize the past research on the topic into two groups based on their focus, namely, compositional and structural stability, and discuss the most relevant and exciting findings.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: tasan@mit.edu

Footnotes

Hide All
b)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
2.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
3.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
4.Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., and Antretter, T.: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723 (2000).
5.Fine, M.E.: Precipitation hardening of aluminum alloys. Metall. Trans. A 6, 625 (1975).
6.Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
7.Lu, L., Shen, Y., Chen, X., Qian, L., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).
8.Cahn, R.W. and Haasen, P.: Physical Metallurgy, Vol. 1 (North-Holland, Amsterdam, 1996).
9.Ostwald, W.: On chemical energy. J. Am. Chem. Soc. 15, 421 (1893).
10.Turnbull, D.: Metastable structures in metallurgy. Metall. Trans. B 12, 217 (1981).
11.Senkov, O., Wilks, G., Scott, J., and Miracle, D.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
12.Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).
13.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
14.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
15.Tong, C-J., Chen, M-R., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., and Chang, S-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).
16.Tong, C-J., Chen, Y-L., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).
17.Chen, H-Y., Tsai, C-W., Tung, C-C., Yeh, J-W., Shun, T-T., Yang, C-C., and Chen, S-K.: Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys. Ann. Chim. 31, 6 (2006).
18.Chen, M-R., Lin, S-J., Yeh, J-W., Chen, S-K., Huang, Y-S., and Tu, C-P.: Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys Mater. Trans. 47, 1395 (2006).
19.Chen, M-R., Lin, S-J., Yeh, J-W., Chuang, M-H., Chen, S-K., and Huang, Y-S.: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363 (2006).
20.Wu, J-M., Lin, S-J., Yeh, J-W., Chen, S-K., Huang, Y-S., and Chen, H-C.: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 (2006).
21.Hsu, U.S., Hung, U.D., Yeh, J.W., Chen, S.K., Huang, Y.S., and Yang, C.C.: Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater. Sci. Eng., A 460–461, 403 (2007).
22.Huang, Y-S., Chen, L., Lui, H-W., Cai, M-H., and Yeh, J-W.: Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng., A 457, 77 (2007).
23.Tung, C-C., Yeh, J-W., Shun, T-t., Chen, S-K., Huang, Y-S., and Chen, H-C.: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61, 1 (2007).
24.Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
25.Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212 (2013).
26.Munitz, A., Meshi, L., and Kaufman, M.J.: Heat treatments’ effects on the microstructure and mechanical properties of an equiatomic Al–Cr–Fe–Mn–Ni high entropy alloy. Mater. Sci. Eng., A 689, 384 (2017).
27.Singh, S., Wanderka, N., Kiefer, K., Siemensmeyer, K., and Banhart, J.: Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111, 619 (2011).
28.Singh, S., Wanderka, N., Murty, B.S., Glatzel, U., and Banhart, J.: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182 (2011).
29.Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).
30.Knipling, K.E., Tharpe, J.L., and Liaw, P.K.: Nanoscale phase separation in Al0.5CoCrFeNi(Cu) high entropy alloys as studied by atom probe tomography. Microsc. Microanal. 23, 726 (2017).
31.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
32.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
33.Yeh, J-W., Chen, Y-L., Lin, S-J., and Chen, S-K: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum. 560 (2008).
34.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
35.Yeh, J-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).
36.Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).
37.Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).
38.He, F., Wang, Z., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).
39.Stepanov, N.D., Yurchenko, N.Y., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2018).
40.Wang, Z., Guo, S., and Liu, C.T.: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).
41.Rao, J.C., Diao, H.Y., Ocelík, V., Vainchtein, D., Zhang, C., Kuo, C., Tang, Z., Guo, W., Poplawsky, J.D., Zhou, Y., Liaw, P.K., and De Hosson, J.T.M.: Secondary phases in AlxCoCrFeNi high-entropy alloys: An in situ TEM heating study and thermodynamic appraisal. Acta Mater. 131, 206 (2017).
42.Gwalani, B., Soni, V., Choudhuri, D., Lee, M., Hwang, J.Y., Nam, S.J., Ryu, H., Hong, S.H., and Banerjee, R.: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys—Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr. Mater. 123, 130 (2016).
43.Zhang, L., Zhou, Y., Jin, X., Du, X., and Li, B.: The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr. Mater. 146, 226 (2018).
44.Zhao, Y.L., Yang, T., Zhu, J.H., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 148, 51 (2018).
45.Antonov, S., Detrois, M., and Tin, S.: Design of novel precipitate-strengthened Al–Co–Cr–Fe–Nb–Ni high-entropy superalloys. Metall. Mater. Trans. A 49, 305 (2017).
46.Tang, Q., Huang, Y., Cheng, H., Liao, X., Langdon, T.G., and Dai, P.: The effect of grain size on the annealing-induced phase transformation in an Al0·3CoCrFeNi high entropy alloy. Mater. Des. 105, 381 (2016).
47.Shun, T-T. and Du, Y-C.: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157 (2009).
48.He, F., Wang, Z., Li, Y., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Kinetic ways of tailoring phases in high entropy alloys. Sci. Rep. 6, 34628 (2016).
49.Shun, T-T., Chang, L-Y., and Shiu, M-H.: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mater. Charact. 70, 63 (2012).
50.He, F., Wang, Z., Wang, J., Wu, Q., Chen, D., Han, B., Li, J., Wang, J., and Kai, J.J.: Abnormal γ″–ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scr. Mater. 146, 281 (2018).
51.Shun, T-T., Hung, C-H., and Lee, C-F.: The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C. J. Alloys Compd. 495, 55 (2010).
52.Wang, Z., Huang, Y., Wang, J., and Liu, C.: Design of high entropy alloys based on the experience from commercial superalloys. Philos. Mag. Lett. 95, 1 (2015). (ahead-of-print).
53.He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).
54.Zhao, Y.L., Yang, T., Tong, Y., Wang, J., Luan, J.H., Jiao, Z.B., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72 (2017).
55.Ming, K., Bi, X., and Wang, J.: Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. Int. J. Plast. 100, 177 (2018).
56.He, J.Y., Wang, H., Wu, Y., Liu, X.J., Mao, H.H., Nieh, T.G., and Lu, Z.P.: Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79, 41 (2016).
57.Chang, Y-J. and Yeh, A-C.: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy. Mater. Chem. Phys. 210, 111 (2018).
58.Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).
59.Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr. Mater. 137, 88 (2017).
60.Zaddach, A.J., Scattergood, R.O., and Koch, C.C.: Tensile properties of low-stacking fault energy high-entropy alloys. Mater. Sci. Eng., A 636, 373 (2015).
61.Zhao, S., Stocks, G.M., and Zhang, Y.: Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater. 134, 334 (2017).
62.Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., and Liu, C.T.: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130, 96 (2017).
63.Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).
64.Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152 (2016).
65.Miao, J., Slone, C.E., Smith, T.M., Niu, C., Bei, H., Ghazisaeidi, M., Pharr, G.M., and Mills, M.J.: The evolution of the deformation substructure in a Ni–Co–Cr equiatomic solid solution alloy. Acta Mater. 132, 35 (2017).
66.Han, B., Wei, J., Tong, Y., Chen, D., Zhao, Y., Wang, J., He, F., Yang, T., Zhao, C., Shimizu, Y., Inoue, K., Nagai, Y., Hu, A., Liu, C.T., and Kai, J.J.: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr. Mater. 148, 42 (2018).
67.Zhao, Y.Y., Chen, H.W., Lu, Z.P., and Nieh, T.G.: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 147, 184 (2018).
68.Dimiduk, D.M., Thompson, A.W., and Williams, J.C.: The compositional dependence of antiphase-boundary energies and the mechanism of anomalous flow in Ni3Al alloys. Philos. Mag. A 67, 675 (1993).
69.Lee, E.H.: A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 9, 163 (2014).
70.Zhang, F., Wu, Y., Lou, H., Zeng, Z., Prakapenka, V.B., Greenberg, E., Ren, Y., Yan, J., Okasinski, J.S., Liu, X., Liu, Y., Zeng, Q., and Lu, Z.: Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).
71.Zhang, F., Zhao, S., Jin, K., Bei, H., Popov, D., Park, C., Neuefeind, J.C., Weber, W.J., and Zhang, Y.: Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett. 110, 011902 (2017).
72.Ahmad, A.S., Su, Y., Liu, S., Ståhl, K., Wu, Y., Hui, X., Ruett, U., Gutowski, O., Glazyrin, K., and Liermann, H.: Structural stability of high entropy alloys under pressure and temperature. J. Appl. Phys. 121, 235901 (2017).
73.Li, G., Xiao, D., Yu, P., Zhang, L., Liaw, P.K., Li, Y., and Liu, R.: Equation of state of an AlCoCrCuFeNi high-entropy alloy. JOM 67, 2310 (2015).
74.Huang, E-W., Lin, C-M., Jain, J., Shieh, S.R., Wang, C-P., Chuang, Y-C., Liao, Y-F., Zhang, D-Z., Huang, T., and Lam, T-N.: Irreversible phase transformation in a CoCrFeMnNi high entropy alloy under hydrostatic compression. Mater. Today Commun. 14, 10 (2018).
75.Yu, P., Zhang, L., Ning, J., Ma, M., Zhang, X., Li, Y., Liaw, P., Li, G., and Liu, R.: Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Mater. Lett. 196, 137 (2017).
76.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
77.Olson, G. and Cohen, M.: Kinetics of nucleation strain-induced martensitic. Metall. Mater. Trans. A 6, 791 (1975).
78.Olson, G. and Cohen, M.: A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall. Trans. A 7, 1897 (1976).
79.Olson, G. and Cohen, M.: A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations. Metall. Trans. A 7, 1905 (1976).
80.Olson, G. and Cohen, M.: A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation. Metall. Trans. A 7, 1915 (1976).
81.Birch, F.: Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res.: Solid Earth 83, 1257 (1978).
82.Bridgman, P.: The Physics of High Pressure (G. Bell and Sons, London, 1949). Google Scholar. 51 (1980).
83.Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
84.Tasan, C.C., Deng, Y., Pradeep, K.G., Yao, M.J., Springer, H., and Raabe, D.: Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM 66, 1993 (2014).
85.Li, G., Xiao, D.H., Yu, P.F., Zhang, L.J., Liaw, P.K., Li, Y.C., and Liu, R.P.: Equation of state of an AlCoCrCuFeNi high-entropy alloy. JOM, 67, 10 (2015).
86.Pradeep, K.G., Tasan, C.C., Yao, M.J., Deng, Y., Springer, H., and Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).
87.Wang, Z., Baker, I., Cai, Z., Chen, S., Poplawsky, J.D., and Guo, W.: The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 120, 228 (2016).
88.Li, Z., Tasan, C.C., Springer, H., Gault, B., and Raabe, D.: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).
89.Chen, L.B., Wei, R., Tang, K., Zhang, J., Jiang, F., He, L., and Sun, J.: Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Mater. Sci. Eng., A 716, 150 (2018).
90.Wang, Z., Baker, I., Guo, W., and Poplawsky, J.D.: The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater. 126, 346 (2017).
91.Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).
92.Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).
93.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).
94.Li, Z.M., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).
95.Raabe, D., Tasan, C.C., Springer, H., and Bausch, M.: From high‐entropy alloys to high‐entropy steels. Steel Res. Int. 86, 1127 (2015).
96.De Cooman, B.C., Estrin, Y., and Kim, S.K.: Twinning-induced plasticity (TWIP) steels. Acta Mater. 142, 283 (2018).
97.Ma, D., Yao, M., Pradeep, K.G., Tasan, C.C., Springer, H., and Raabe, D.: Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288 (2015).
98.Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2011).
99.Stepanov, N., Yurchenko, N.Y., Gridneva, A., Zherebtsov, S., Ivanisenko, Y.V., and Salishchev, G.: Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. Mater. Sci. Eng., A 716, 308 (2018).
100.Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).
101.Wani, I.S., Bhattacharjee, T., Sheikh, S., Lu, Y.P., Chatterjee, S., Bhattacharjee, P.P., Guo, S., and Tsuji, N.: Ultrafine-Grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 4, 174 (2016).
102.Yoshida, S., Bhattacharjee, T., Bai, Y., and Tsuji, N.: Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 134, 33 (2017).
103.Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, L31 (2009).
104.Jo, Y.H., Jung, S., Choi, W.M., Sohn, S.S., Kim, H.S., Lee, B.J., Kim, N.J., and Lee, S.: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 8, 15719 (2017).
105.Schuh, B., Völker, B., Maier-Kiener, V., Todt, J., Li, J., and Hohenwarter, A.: Phase decomposition of a single-phase AlTiVNb high-entropy alloy after severe plastic deformation and annealing. Adv. Eng. Mater. 19, 1600674 (2017).
106.Bhattacharjee, T., Wani, I., Sheikh, S., Clark, I., Okawa, T., Guo, S., Bhattacharjee, P., and Tsuji, N.: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018).
107.Yuan, H., Tsai, M-H., Sha, G., Liu, F., Horita, Z., Zhu, Y., and Wang, J.T.: Atomic-scale homogenization in an fcc-based high-entropy alloy via severe plastic deformation. J. Alloys Compd. 686, 15 (2016).
108.Heczel, A., Kawasaki, M., Lábár, J.L., Jang, J-i., Langdon, T.G., and Gubicza, J.: Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J. Alloys Compd. 711, 143 (2017).
109.Wu, W., Ni, S., Liu, Y., Liu, B., and Song, M.: Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion. Mater. Charact. 127, 111 (2017).
110.babu, C.S., Sivaprasad, K., Muthupandi, V., and Szpunar, J.A.: Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci. 5, 1020 (2014).
111.Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., and Yang, S.: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater. Des. 44, 535 (2013).
112.Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).
113.Fu, Z., MacDonald, B.E., Zhang, D., Wu, B., Chen, W., Ivanisenko, J., Hahn, H., and Lavernia, E.J.: Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity. Scr. Mater. 143, 108 (2018).
114.Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).
115.Schuh, B., Völker, B., Todt, J., Schell, N., Perrière, L., Li, J., Couzinié, J., and Hohenwarter, A.: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201 (2018).
116.Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).
117.Bhattacharjee, P.P., Sathiaraj, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C-W., and Yeh, J-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544 (2014).
118.Wynblatt, P. and Chatain, D.: Anisotropy of segregation at grain boundaries and surfaces. Metall. Mater. Trans. A 37, 2595 (2006).
119.MacLean, D.: Grain Boundaries in Metals (Clarendon Press, Oxford, London, 1957).
120.Zhou, N., Hu, T., Huang, J., and Luo, J.: Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160 (2016).

Keywords

Related content

Powered by UNSILO

Metastability in high-entropy alloys: A review

  • Shaolou Wei (a1), Feng He (a2) and Cemal Cem Tasan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.