Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:30:28.163Z Has data issue: false hasContentIssue false

Melting Behavior of Copper Nanocrystals Encapsulated in Onion-like Carbon Cages

Published online by Cambridge University Press:  01 July 2005

Andreas K. Schaper*
Affiliation:
Material Sciences Center, Philipps University, 35032 Marburg, Germany
Fritz Phillipp
Affiliation:
Max Planck Institute for Metals Research, 70569 Stuttgart, Germany
Haoqing Hou
Affiliation:
Chemistry College of Jiangxi Normal University, Nanchang, JX 330027, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: schaper@staff.uni-marburg.de
Get access

Abstract

Nanoparticulate materials are promising objects for studying the processes that triggermelting of solids. On a pyrolytic route, we successfully encapsulated 20–60 nm diameter Cu nanocrystals within multilayer graphitic carbon spheres. In situ electron microscope observations of the melting and displacement of the encapsulated Cu nanocrystals at temperatures up to 1175 K have provided clear evidence of the process of surface melting and its dependence on the quality of the metal/carbon interface. Detection of crystal defects inside the Cu particles during melting and vaporization has proved that the metal phase maintains its solid crystalline state in the particle center. Indications of the influence of surface anisotropy on the melting behavior were obtained. The carbon cages as a whole remained unchanged during the observations.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dash, J.G.: History of the research for continuous melting. Rev. Mod. Phys. 71, 1737 (1999).CrossRefGoogle Scholar
2Cahn, R.W.: Melting and the surface. Nature 323, 668 (1986).CrossRefGoogle Scholar
3Cahn, R.W.: Melting from within. Nature 413, 582 (2001).CrossRefGoogle Scholar
4Lindemann, F.A.: About the calculation of molecular Eigen-frequencies. Physik. Zeitschr. 11, 609 (1910).Google Scholar
5Born, M.: Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591 (1939).CrossRefGoogle Scholar
6Jin, Z.H., Gumbsch, P., Lu, K. and Ma, E.: Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001).CrossRefGoogle ScholarPubMed
7Stock, K.D. and Menzel, E.: Probing the surface melt of copper crystals. J. Cryst. Growth 43, 135 (1978).CrossRefGoogle Scholar
8Jayanthi, C.S., Tosatti, E. and Pietronero, L.: Surface melting of copper. Phys. Rev. B 31, 3456 (1985).CrossRefGoogle ScholarPubMed
9Frenken, J.W.M. and van der Veen, J.F.: Observation of surface melting. Phys. Rev. Lett. 54, 134 (1985).CrossRefGoogle ScholarPubMed
10Frenken, J.W.M., Marée, P.M.J. and van der Veen, J.F.: Observation of surface-induced melting. Phys. Rev. B 34, 7506 (1986).CrossRefGoogle Scholar
11Pluis, B., van der Gon, A.W. Denier, Frenken, J.W.M. and van der Veen, J.F.: Crystal-face dependence of surface melting. Phys. Rev. Lett. 59, 2678 (1987).CrossRefGoogle ScholarPubMed
12Prince, K.C., Breuer, U. and Bonzel, H.P.: Anisotropy of the order-disorder phase transition on the Pb(110) surface. Phys. Rev. Lett. 60, 1146 (1988).CrossRefGoogle ScholarPubMed
13Barnett, R.N. and Landman, U.: Surface premelting of Cu(110). Phys. Rev. B 44, 3226 (1991).CrossRefGoogle ScholarPubMed
14Häkkinen, H. and Manninen, M.: Computer simulation of disordering and premelting of low index faces of copper. Phys. Rev. B 46, 1725 (1992).CrossRefGoogle ScholarPubMed
15Rossouw, C.J. and Donnelly, S.E.: Superheating of small solid-argon bubbles in aluminum. Phys. Rev. Lett. 55, 2960 (1985).CrossRefGoogle ScholarPubMed
16Boyce, J.B. and Stutzmann, M.: Orientational ordering and melting of molecular H2 in an a-Si matrix: NMR studies. Phys. Rev. Lett. 54, 562 (1985).CrossRefGoogle Scholar
17Häkkinen, H. and Landman, U.: Superheating, melting and annealing of copper surfaces. Phys. Rev. Lett. 71, 1023 (1993).CrossRefGoogle ScholarPubMed
18Banhart, F., Hernándes, E. and Terrones, M.: Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. Phys. Rev. Lett. 90, 185502 (2003).CrossRefGoogle ScholarPubMed
19Hou, H., Schaper, A.K., Weller, F. and Greiner, A.: Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem. Mater. 14, 3990 (2002).CrossRefGoogle Scholar
20Linde, M. Time-resolved HRTEM investigations of the concentration and ordering fluctuations in crystalline Cu3Au nanoparticles. Ph.D. Thesis, Universität Stuttgart (Cuvillier-Verlag, Göttingen, Germany, 2001).Google Scholar
21Höschen, R., Sigle, W., and Phillipp, F.: A drift compensating system for electron microscopes, in Proc. 11th EUREM, (Dublin, Ireland, August 26–30, 1996) Vol. 1, edited by The Committee of European Societies of Microscopy, Brussels, Belgium, 1998, p. 373.Google Scholar
22Banhart, F., Grobert, N., Terrones, M., Charlier, J-C. and Ajayan, P.M.: Metal atoms in carbon nanotubes and related nanoparticles. Intern. J. Modern Physics B 15, 4037 (2001).CrossRefGoogle Scholar
23Schaper, A.K., Hou, H., Greiner, A., Schneider, R. and Phillipp, F.: Copper nanoparticles encapsulated in multi-shell carbon cages. Appl. Phys. A 78, 73 (2004).CrossRefGoogle Scholar
24Kang, Z.C. and Wang, Z.L.: Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nanosized carbon spheres. Philos. Mag. B 73, 905 (1996).CrossRefGoogle Scholar
25Serp, Ph., Feurer, R., Kalck, Ph., Kihn, Y., Faria, J.L. and Figueiredo, J.L.: A chemical vapour deposition process for the production of carbon nanospheres. Carbon 39, 615 (2001).CrossRefGoogle Scholar
26Banhart, F., Füller, T., Redlich, Ph. and Ajayan, P.M.: The formation, annealing and self-compression of carbon onions under electron irradiation. Chem. Phys. Lett. 269, 349 (1997).CrossRefGoogle Scholar
27Banhart, F., Redlich, P. and Ajayan, P.M.: The migration of metal atoms through carbon onions. Chem. Phys. Lett. 292, 554 (1998).CrossRefGoogle Scholar
28Padeletti, G. and Fermo, P.: How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period. Appl. Phys. A 76, 515 (2003).CrossRefGoogle Scholar
29Dubiel, M., Hofmeister, H., Than, G.L., Schicke, K-D. and Wendler, E.: Silver diffusion and precipitation of nanoparticles in glass by ion implantation. Eur. Phys. J. D. 24, 361 (2003).CrossRefGoogle Scholar
30Gryaznov, V.G. and Trusov, L.I.: Size effects in micromechanics of nanocrystals. Prog. Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
31Iijima, S. and Ichihashi, T.: Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616 (1986).CrossRefGoogle ScholarPubMed
32Smith, D.J., Petford-Long, A.K., Wallenberg, L.R. and Bovin, J-O.: Dynamic atomic-level rearrangements in small gold particles. Science 233, 872 (1986).CrossRefGoogle ScholarPubMed
33Buffat, Ph. and Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
34Dick, K., Dhanasekaran, T., Zhang, Z. and Meisel, D.: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312 (2002).Google Scholar
35Goldstein, A.N., Echer, C.M. and Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425 (1992).CrossRefGoogle ScholarPubMed
36Metois, J.J. and Heyraud, J.C.: The overheating of lead crystals. J. Phys. (Paris) 50, 3175 (1989).CrossRefGoogle Scholar
37Severin, V.I., Tseplyaeva, A.V., Priselkov, Yu.A. and Ryabtseva, L.P.: Vapour pressure and heat of sublimation of copper. High Temp. 24, 363 (1986).Google Scholar
38Iijima, S. and Ichihashi, T.: Motion of surface atoms on small gold particles revealed by HREM with real-time VTR system. Jpn. J. Appl. Phys. 24 L125 (1985).CrossRefGoogle Scholar
39Bovin, J-O., Wallenberg, R. and Smith, D.J.: Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy. Nature 317, 47 (1985).CrossRefGoogle Scholar