Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T21:10:19.098Z Has data issue: false hasContentIssue false

Mechanism for LiNb3O8 phase formation during thermal annealing of crystalline and amorphous LiNbO3 thin films

Published online by Cambridge University Press:  31 January 2011

H. Akazawa*
Affiliation:
Nippon Telegraph and Telephone (NTT) Microsystem Integration Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan
M. Shimada
Affiliation:
Nippon Telegraph and Telephone (NTT) Microsystem Integration Laboratories, Atsugi-shi, Kanagawa 243-0198, Japan
*
a)Address all correspondence to this author. e-mail: akazawa@aecl.ntt.co.jp
Get access

Abstract

The kinetics of second phase formation during the thermal annealing of crystalline and amorphous LiNbO3(LN) thin films was investigated. When c-axis-oriented LN texture film was annealed at temperatures higher than 700 °C, Li2O desorbed from the surface and grain boundaries, which induced epitaxial precipitation of the LiNb3O8phase on the LN (0001) plane. While the LiNb3O8volume exhibited saturation behavior against annealing time, oxygen atoms continued to diffuse out from the inner part of the film. Arrhenius plots of the rate of LiNb3O8formation and oxygen loss were scaled with common activation energy of 30.5 kcal/mol. In terms of phase formation from amorphous LN, annealing at 700 °C in a vacuum induced rapid crystallization into mixtures of LN and LiNb3O8, the volume ratio of which can be explained by the phase separation model. Annealing in an O2atmosphere, however, produced an incubation time before crystallization and a larger volume fraction of LiNb3O8after crystallization. Oxygen molecules that penetrated into the film will hinder the migration of atoms and decelerate crystallization. Vacancies produced as a result of Li2O loss will facilitate the nucleation of LN and LiNb3O8pairs while maintaining the epitaxial relation.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Akazawa, H.Shimada, M.: Electron cyclotron resonance plasma sputtering growth of textured films of c-axis-oriented LiNbO3on Si(100) and Si(111) surfaces. J. Vac. Sci. Technol., A 22, 1793 2004CrossRefGoogle Scholar
2Akazawa, H.Shimada, M.: Correlation between interfacial structure and c-axis-orientation of LiNbO3films grown on Si and SiO2by electron cyclotron resonance plasma sputtering. J. Cryst. Growth 270, 560 2004CrossRefGoogle Scholar
3Akazawa, H.Shimada, M.: Control of crystallographic orientation of LiNbO3films grown by electron-cyclotron resonance plasma sputtering on TiN films. Vacuum 80, 704 2006CrossRefGoogle Scholar
4Akazawa, H.Shimada, M.: Factors driving c-axis orientation and disorientation of LiNbO3thin films deposited on TiN and indium tin oxide by electron cyclotron resonance plasma sputtering. J. Appl. Phys. 99, 124103 2006CrossRefGoogle Scholar
5Buchal, Ch., Loken, M.Siegert, M.: Silicon-based optoelectronics, in Materials and Devices for Silicon-Based Optoelectronics, edited by A. Polman, S. Coffa, and R. Soref (Mater. Res. Soc. Symp. Proc.486, Pittsburgh, PA, 1998), p. 3CrossRefGoogle Scholar
6Schuppert, B.Petermann, K.: Integrated optic devices in silicon and silicon-on-insulator materials, in Materials and Devices for Silicon-Based Optoelectronics, edited by A. Polman, S. Coffa, and R. Soref (Mater. Res. Soc. Symp. Proc.486, Pittsburgh, PA, 1998), p. 33CrossRefGoogle Scholar
7Giovane, L.M., Lim, D.R., Ahn, S.H., Chen, T.D., Foresi, J.S., Liao, L., Oulette, E.J., Agarwal, A.M., Duan, X., Michel, J., Thilderkvist, A.Kimerling, L.C.: Materials for monolithic silicon microphotonics, in Materials and Devices for Silicon-Based Optoelectronics, edited by A. Polman, S. Coffa, and R. Soref (Mater. Res. Soc. Symp. Proc.486, Pittsburgh, PA, 1998), p. 45CrossRefGoogle Scholar
8Akazawa, H.Shimada, M.: Spectroellipsometric approach to determine linear electro-optic coefficient of c-axis-oriented LiNbO3thin films. J. Appl. Phys. 98, 113501 2005CrossRefGoogle Scholar
9Rost, T.A., Lin, H., Rabson, T.A., Stone, B.A., Baumann, R.C.Callahan, D.L.: Deposition and analysis of lithium niobate and other lithium niobium oxides by rf magnetron sputtering. J. Appl. Phys. 72, 4336 1992CrossRefGoogle Scholar
10Prokhorov, A.M.Kuz’minov, Y.S.: Physics and Chemistry of Crystalline Lithium Niobate,(Adam Hilger, New York, 1990)Google Scholar
11Svaasand, L.O., Eriksrud, M., Grande, A.P.Mo, F.: Crystal growth and properties of LiNbO3. J. Cryst. Growth 18, 179 1973CrossRefGoogle Scholar
12Svaasand, L.O., Eriksrud, M., Nakken, G.Grande, A.P.: Solid-solution range of LiNbO3. J. Cryst. Growth 22, 230 1974CrossRefGoogle Scholar
13Esdaile, R.J.: Comment on “Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35)O2compound growth observed during Ti:LiNbO3optical waveguide fabrication.” J. Appl. Phys. 58, 1070 1985CrossRefGoogle Scholar
14Armenise, M.N., Canali, C., De Sario, M., Camera, A., Mazzoldi, P.Celotti, G.: Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35)O2compound growth observed during Ti:LiNbO3optical waveguide fabrication. J. Appl. Phys. 54, 6223 1983CrossRefGoogle Scholar
15De Sario, M., Armenise, M.N., Canali, C., Carnera, A., Mazzoldi, P.Celotti, G.: TiO2, LiNb3O8, and (TixNb1-x)O2compound kinetics during Ti:LiNbO3waveguide fabrication in the presence of water vapor. J. Appl. Phys. 57, 1482 1985CrossRefGoogle Scholar
16Jetschke, S.Hehl, K.: Diffusion and recrystallization processes during annealing of N+- and P+- implanted LiNbO3. Phys. Status Solidi A 88, 193 1985CrossRefGoogle Scholar
17Jorgensen, P.J.Bartlett, R.W.: High temperature transport processes in lithium niobate. J. Phys. Chem. Solids 30, 2639 1969CrossRefGoogle Scholar
18Partlow, D.P.Greggi, J.: Properties and microstructure of thin LiNbO3films prepared by a sol-gel process. J. Mater. Res. 2, 595 1987CrossRefGoogle Scholar
19Carruthers, J.R., Kaminow, I.P.Stulz, L.W.: Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate. Appl. Opt. 13, 2333 1974CrossRefGoogle ScholarPubMed
20Nassau, K.Lines, M.E.: Stacking-fault model for stoichiometry deviations in LiNbO3and LiTaO3and the effect on the Curie temperatures. J. Appl. Phys. 41, 533 1970CrossRefGoogle Scholar
21Shigemi, A.Wada, T.: Enthalpy of formation of various phases and formation energy of point defects in perovskite-type NaNbO3by first-principles calculation. Jpn. J. Appl. Phys., Part I 43, 6793 2004CrossRefGoogle Scholar