Skip to main content Accessibility help
×
Home

Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures

  • Qiu-Wei Xing (a1), Song-Qin Xia (a1), Xue-Hui Yan (a1) and Yong Zhang (a2)

Abstract

High-entropy ceramic (HEC) films refer to the carbide, boride, oxide, or nitride films of the high-entropy alloy, which have potential applications under high temperatures. In this study, we fabricated the HEC NbTiAlSiZrNx films using magnetron sputtering under various deposition atmospheres. The phase structure evolution and the mechanical properties of three HEC films under high temperatures were investigated. The HEC films demonstrated good thermal stability as well as high hardness. After annealing for 24 h at 700 °C, the films remained in an amorphous phase without obvious crystallization, and the hardness of the films declined. Nanocrystallizations occurred in films deposited at a nitrogen flow rate of 4 sccm and 8 sccm after annealing for 30 min at 900 °C and exhibited an face-centered cubic structure. HEC NbTiAlSiZrNx films have potential applications as protective coatings under high temperatures.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: drzhangy@ustb.edu.cn

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
3.Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).
4.Xia, S., Gao, M.C., Yang, T., Liaw, P.K., and Zhang, Y.: Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater. 480, 100 (2016).
5.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
6.Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).
7.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
8.Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).
9.Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
10.Bérardan, D., Franger, S., Meena, A.K., and Dragoe, N.: Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536 (2016).
11.Yeh, J.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).
12.Chang, S., Li, C., Chiang, S., and Huang, Y.: 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects. J. Alloys Compd. 515, 4 (2012).
13.Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., and Russo, A.: Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197 (2012).
14.Tsai, D., Deng, M., Chang, Z., Kuo, B., Chen, E., Chang, S., and Shieu, F.: Oxidation resistance and characterization of (AlCrMoTaTi)–Six–N coating deposited via magnetron sputtering. J. Alloys Compd. 647, 179 (2015).
15.Sheng, W., Yang, X., Wang, C., and Zhang, Y.: Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy 18, 226 (2016).
16.Sheng, W., Yang, X., Zhu, J., Wang, C., and Zhang, Y.: Amorphous phase stability of NbTiAlSiNx high-entropy films. Rare Met. 37, 682 (2018).
17.Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).
18.Chen, T., Wong, M., Shun, T., and Yeh, J.: Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 200, 1361 (2005).
19.Lai, C., Lin, S., Yeh, J., and Chang, S.: Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 201, 3275 (2006).
20.Lin, C.H., Duh, J.G., and Yeh, J.W.: Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf. Coat. Technol. 201, 6304 (2007).
21.Tsai, M., Lai, C., Yeh, J., and Gan, J.: Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings. J. Phys. D: Appl. Phys. 41, 235402 (2008).
22.Liu, L., Zhu, J.B., Hou, C., Li, J.C., and Jiang, Q.: Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Mater. Des. 46, 675 (2013).
23.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
24.Xie, L., Brault, P., Thomann, A., Yang, X., Zhang, Y., and Shang, G.: Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68, 78 (2016).
25.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
26.Tsai, C., Lai, S., Cheng, K., Tsai, M., Davison, A., Tsau, C., and Yeh, J.: Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films 520, 2613 (2012).
27.Ishii, A., Iwase, A., Fukumoto, Y., Yokoyama, Y., Konno, T.J., and Hori, F.: Effect of thermal annealing on the local structure in ZrCuAl bulk metallic glass. J. Alloys Compd. 504, S230 (2010).
28.Berg, S., Blom, H.O., Larsson, T., and Nender, C.: Modeling of reactive sputtering of compound materials. J. Vac. Sci. Technol., A 5, 202 (1987).
29.Van Steenberge, N., Concustell, A., Sort, J., Das, J., Mattern, N., Gebert, A., Suriñach, S., Eckert, J., and Baró, M.D.: Microstructural inhomogeneities introduced in a Zr-based bulk metallic glass upon low-temperature annealing. Mater. Sci. Eng., A 491, 124 (2008).
30.Stoica, M., Van Steenberge, N., Bednarčik, J., Mattern, N., Franz, H., and Eckert, J.: Changes in short-range order of Zr55Cu30Al10Ni5 and Zr55Cu20Al10Ni10Ti5 BMGs upon annealing. J. Alloys Compd. 506, 85 (2010).
31.Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed