Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T14:37:25.327Z Has data issue: false hasContentIssue false

Mechanical and thermal properties of combustion-synthesized perovskites, La1−xSrxCr0.2Fe0.8O3

Published online by Cambridge University Press:  31 January 2011

Yeong-Shyung Chou
Affiliation:
Materials Department, Pacific Northwest National Laboratory, Richland, Washington 99352
K. Kerstetter
Affiliation:
Materials Department, Pacific Northwest National Laboratory, Richland, Washington 99352
L. R. Pederson
Affiliation:
Materials Department, Pacific Northwest National Laboratory, Richland, Washington 99352
R. E. Williford
Affiliation:
Materials Department, Pacific Northwest National Laboratory, Richland, Washington 99352
Get access

Abstract

This paper examined the room-temperature thermal and mechanical properties of a mixed conducting perovskite La1−xSrxCr0.2Fe0.8O3 (x = 0.2 to 0.8). Powders were made by the combustion-synthesis technique and sintered at 1250 °C in air. Sintered density, crystal phase, and grain size were characterized. Linear thermal expansion in air was also tested. Young's and shear moduli, microhardness, indentation fracture toughness, and biaxial flexure strength were determined. It was found that the linear coefficient of thermal expansion increased with increasing Sr content, while elastic modulus appeared to decrease with increasing Sr content. Young's modulus of 128 to 192 GPa and shear modulus of 51 to 74 GPa were measured. A biaxial flexure strength of 243 MPa was measured for the lowest Sr content batches. Batches with higher Sr concentrations (x = 0.6 to 0.8) showed extensive cracking. Indentation toughness showed a decrease with increasing Sr content. In addition, fractography was used to characterize the critical flaw and the fracture mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Teraoka, Y., Zhang, H.M., Okamoto, K., and Yamazoe, N., Mater. Res. Bull. 23, 51 (1988).CrossRefGoogle Scholar
2.Stevenson, J.W., Armstrong, T.R., Carneim, R.D., Pederson, L.R., and Weber, W.J., J. Electrochem. Soc. 143, 2722 (1996).CrossRefGoogle Scholar
3.Chen, C.C., Nasrallah, M.M., Anderson, H.U., and Alim, M.A., J. Electrochem. Soc. 142, 491 (1995).CrossRefGoogle Scholar
4.Sekido, S., Tachibana, H., Yamamura, Y., and Kambara, T., Solid State Ionics 37, 253 (1990).CrossRefGoogle Scholar
5.Kruidhof, H., Bouwmeester, H.J.M., Doorn, R.H.E., and Burggraaf, A.J., Solid State Ionics 63–65, 816 (1993).CrossRefGoogle Scholar
6.Teraoka, Y., Nobunaga, T., Okamoto, K., and Yamazoe, N., Solid State Ionics 48, 207 (1991).CrossRefGoogle Scholar
7.van Hassel, B.A., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., Solid State Ionics 66, 41 (1993).CrossRefGoogle Scholar
8.Carter, S., Selcuk, A., Chater, R.J., Kajda, J., Kilner, J.A., and Steele, B.C.H., Solid State Ionics 53–56, 597 (1992).CrossRefGoogle Scholar
9.Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K., J. Solid State Chem. 73, 179 (1998).CrossRefGoogle Scholar
10.Mizusaki, J., Yoshihiro, M., Yamauchi, S., and Fueki, K., J. Solid State Chem 58, 257 (1985).CrossRefGoogle Scholar
11.Tai, L-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R., Solid State Ionics 76, 272 (1995).Google Scholar
12.Tsai, C-Y., Dixon, A.G., Ma, Y.H., Moser, W.R., and Pascucci, M.R., J. Am. Ceram. Soc. 81, 1437 (1998).CrossRefGoogle Scholar
13.Balachandran, U., Dusek, J.T., Sweeney, S.M., Poeppel, R.B., Mieville, R.L., Maiya, P.S., Kleefisch, M.S., Pei, S., Kobylinski, T.P., Udovich, C.A., and Bose, A.C., Am. Ceram. Soc. Bull. 74, 71 (1995).Google Scholar
14.Armstrong, T.R., Stevenson, J.W., Pederson, L.R., and Raney, P.E., J. Electrochem. Soc. 143, 2919 (1996).CrossRefGoogle Scholar
15.Armstrong, T.R., Stevenson, J.W., McCready, D.E., Paulik, S.W., and Raney, P.E., Solid State Ionics 92, 213 (1996).CrossRefGoogle Scholar
16.Chou, Y-S., Stevenson, J.W., Armstrong, T.R., and Pederson, L.R., J. Am. Ceram. Soc. 83, 1457 (2000).CrossRefGoogle Scholar
17.Chou, Y-S., Stevenson, J.W., Armstrong, T.R., Hardy, J.S., Hasinska, K., and Pederson, L.R., J. Mater. Res. 15, 1505 (2000).CrossRefGoogle Scholar
18.Tai, L-W., Nasrallah, M.N., and Anderson, H.U., J. Solid State Chem 118, 117 (1995).CrossRefGoogle Scholar
19.Bates, J.L., Chick, L.A., and Weber, W.J., Solid State Ionics 52, 235 (1992).Google Scholar
20.Bhardwaj, M.C., in Advanced Metal and Ceramic Composites, Proceedings of International Conference on Advanced Metal & Ceramic Matrix Composites: P/M Processing, Process Modeling & Mechanical Behavior (Minerals, Metals & Materials Society, Warrendale, PA, 1990), pp. 115.Google Scholar
21.Kirstein, A.F. and Wooley, R.M., J. Res. Natl. Bur. Stand. 71C, 1 (1967).Google Scholar
22.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
23.Shannon, R.D., Acta. Cryst. A32, 751 (1976).CrossRefGoogle Scholar
24.Momin, A.C., Mirza, E.B., and Mathews, M.D., J. Mater. Sci. Lett. 10, (1991).CrossRefGoogle Scholar
25.Hashimoto, T., Takagi, K., Tsuda, K., Tanaka, M., Yoshida, K., Tagawa, H., and Dokiya, M., Solid Oxide Fuel Cells (SOFC VI), Proceedings of the Sixth International Symposium, edited by Singhal, S.C. and Dokiya, M. (The Electrochemical Society Inc., Pennington, NJ, 1999), Vol. 99–19, pp. 649656.Google Scholar
26.Montross, C.S., J. Euro. Ceram. Soc. 18, 353 (1997).CrossRefGoogle Scholar
27.Cohen, M.L., Phys. Rev. B 32, 7988 (1985).CrossRefGoogle Scholar
28.Tai, L-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R., Solid State Ionics 76, 259 (1995).CrossRefGoogle Scholar
29.Gale, J.D., J. Chem. Soc., Faraday Trans. 93, 629 (1997).CrossRefGoogle Scholar
30.Williford, R.E., Stevenson, J.W., Chou, Y-S., and Pederson, L.R., J. Solid State Chemistry 156, 394 (2001).CrossRefGoogle Scholar
31.Williford, R.E. and Armstrong, T.R., Solid Oxide Fuel Cells (SOFC VI), Proceedings of the Sixth International Symposium, edited by Singhal, S.C. and Dokiya, M. (The Electrochemical Society, Inc., Pennington, NJ, 1999), Vol. 99–19, pp. 687695.Google Scholar
32.Newman, J.C. Jr, and Raju, I.S., Eng. Frac. Mech. 15, 186 (1981).CrossRefGoogle Scholar