Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T22:50:50.907Z Has data issue: false hasContentIssue false

Mechanical and structural characterization of nonsintered and sintered steel wools by x-ray tomography: Description of the techniques and validation on virtual materials

Published online by Cambridge University Press:  15 October 2013

J.P. Masse*
Affiliation:
ArcelorMittal Research, Voie Romaine, 57283 Maizières Les Metz, France
C. Barbier
Affiliation:
LAMCOS, INSA Lyon 18-20, rue des Sciences F69621 Villeurbanne Cédex, France
L. Salvo
Affiliation:
SIMAP Institut National Polytechnique de Grenoble, 38402 Saint Martin d’Hères, France
Y. Bréchet
Affiliation:
SIMAP Institut National Polytechnique de Grenoble, 38402 Saint Martin d’Hères, France
O. Bouaziz
Affiliation:
ArcelorMittal Research, Voie Romaine, 57283 Maizières Les Metz, France; and Centre des Matériaux/Mines Paris, Paristech, CNRS-UMR7633, 91003, Evry cedex, France
D. Bouvard
Affiliation:
SIMAP Institut National Polytechnique de Grenoble, 38402 Saint Martin d’Hères, France
*
a)Address all correspondence to this author. e-mail: jean-philippe.masse@arcelormittal.com
Get access

Abstract

Properties of entangled materials, made of fibers, depend on the number and the nature of contacts between fibers and fibers orientation. Nonsintered and sintered steel wools have been characterized by x-ray tomography to extract structural information such as fibers orientation and number of contacts before and during compression. Image analysis techniques were developed on tomography images and validated on virtual materials, generated and deformed by numerical simulation based on molecular dynamic equations. The structural parameters measured during the structural characterization were finally used to link the structure of the studied material with the measured mechanical properties. To do this link, an analytical model usually used for this kind of material was modified to describe the evolution of mechanical properties in compression.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G.: Metal Foams: A Design Guide (Butterworth–Heinemann, Boston, MA, 2000).Google Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 1999).Google Scholar
Masse, J.P., Salvo, L., Rodney, D., Bréchet, Y., and Bouaziz, O.: Influence of relative density on the architecture and mechanical behaviour of a steel metallic wool. Scr. Mater. 54, 1379 (2006).CrossRefGoogle Scholar
Poquillon, D., Viguier, B., and Andrieu, A.: Experimental data about mechanical behaviour during compression tests for various matted fibres. J. Mater. Sci. 40, 5963 (2006).CrossRefGoogle Scholar
Vassal, J-P., Orgeas, L., and Favier, D.: Modelling microstructure effects on the conduction in fibrous materials with fibre–fibre interface barriers. Modell. Simul. Mater. Sci. Eng. 16, 035007 (2008).CrossRefGoogle Scholar
Dalmas, F., Cavaille, J-Y., Gauthier, C., Chazeau, L., and Dendievel, R.: Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos. Sci. Technol. 67, 829 (2007).CrossRefGoogle Scholar
Lux, J., Ahmadi, A., Gobbé, C., and . Delisée, C: Macroscopic thermal properties of real fibrous materials: Volume averaging method and 3D image analysis. Int. J. Heat Mass Transfer 49, 1958 (2006).CrossRefGoogle Scholar
Shahdin, A., Morlier, J., Gourinat, Y., Mezeix, L., and Bouvet, C.: Fabrication and mechanical testing of a new sandwich structure with carbon fiber network core. J. Sandwich Struct. Mater. 12, 569 (2010).CrossRefGoogle Scholar
Masse, J.P.: Conception optimale de solutions multimatériaux multifonctionnelles: l’exemple des structures sandwich à peaux en acier – choix des matériaux et développement de nouveaux matériaux de cœur. Ph.D. Thesis, Grenoble INP, France, 2009.Google Scholar
Mezeix, L.: Développement de matériaux d'âme pour structures sandwich à base de fibers enchevêtrées. Ph.D. Thesis, Universtité de Toulouse, France, 2010.Google Scholar
Markaki, A.E. and Clyne, T.W.: Mechanics of thin ultra-light stainless steel sandwich sheet material: Part I. Stiffness. Acta Mater. 51, 1341 (2003).CrossRefGoogle Scholar
Markaki, A.E. and Clyne, T.W.: Mechanics of thin ultra-light stainless steel sandwich sheet material: Part II. Resistance to delamination. Acta Mater. 51, 1351 (2003).CrossRefGoogle Scholar
Dean, J., Brown, P.M., and Clyne, T.W.: The low, intermediate, and high speed impact response of lightweight sandwich panels with metallic fibre cores. In: Proceedings of the 8th International Conference on Sandwich Structure (ICCS8), Portugal; Ferreira, A.J.M., ed, 2008.Google Scholar
Gustavsson, R.: Formable sandwich construction material and use of the material as construction material in vehicles, refrigerators, boats, etc. Patent WO 98/01295, AB Volvo, January 15, 1998.Google Scholar
Verchere, D.: Structures sandwich acier/polymère/acier. Tech. Ing. Ref M5810, 2011.CrossRefGoogle Scholar
Markaki, A.E. and Clyne, T.W.: Magneto-mechanical actuation of bonded ferromagnetic fibre arrays. Acta Mater. 53, 877 (2005).CrossRefGoogle Scholar
Liu, P., He, G., and Wu, L.H.: Fabrication of sintered steel wire mesh and its compressive properties. Mater. Sci. Eng., A 489, 21 (2008).CrossRefGoogle Scholar
Masse, J.P. and Poquillon, D.: Mechanical behavior of entangled materials with or without cross-linked fibers. Scr. Mater. 68, 39 (2013).CrossRefGoogle Scholar
Mezeix, L., Bouvet, C., Huez, J., and Poquillon, D.: Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression. J. Mater. Sci. 44, 3652 (2009).CrossRefGoogle Scholar
van Wyk, C.M.: Note on the compressibility of wool. J. Text. Inst. 37, 285292 (1946).CrossRefGoogle Scholar
Toll, S.: Packing mechanics of fiber reinforcements. Polym. Eng. Sci. 38, 1337 (1998).CrossRefGoogle Scholar
Durville, D.: Numerical simulation of entangled materials mechanical properties. J. Mater. Sci. 40, 5941 (2005).CrossRefGoogle Scholar
Barbier, C., Dendievel, R., and Rodney, D.: Role of friction in the mechanics of nonbonded fibrous materials. Phys. Rev. E 80, 16115 (2009).CrossRefGoogle ScholarPubMed
Bouaziz, O., Masse, J.P., and Bréchet, Y.: An analytical description of the mechanical hysteresis of entangled materials during loading–unloading in uniaxial compression. Scr. Mater. 64, 107 (2011).CrossRefGoogle Scholar
Raganathan, S. and Advani, S.G.: Fiber–fiber interactions in homogeneous flows of nondilute suspensions. J. Rheol. 35, 1499 (1991).CrossRefGoogle Scholar
Mlekusch, B.: Thermoelastic properties of short-fibre-reinforced thermoplastics. Compos. Sci. Technol. 59, 547 (1999).CrossRefGoogle Scholar
Eberhardt, C. and Clarke, A.: Fibre-orientation measurements in short-glass-fibre composites. Part I: Automated, high-angular-resolution measurement by confocal microscopy. Compos. Sci. Technol. 61, 1389 (2001).CrossRefGoogle Scholar
Delincé, M. and Delannay, F.: Elastic anisotropy of a transversely isotropic random network of interconnected fibres: Non-triangulated network model. Acta Mater. 52, 1013 (2004).CrossRefGoogle Scholar
Yang., H. and Lindquist, B.W.: Application of digital image processing XXIII. In SPIE; A.G. Tescher, ed, Society of Photo-optical Instrumentation Engineers: San Diego, CA, 2000.Google Scholar
Gong, R.H. and Newton, A.: Image-analysis techniques part II: The measurement of fibre orientation in nonwoven fabrics. J. Text. Inst. 87, 371 (1996).CrossRefGoogle Scholar
Tan, J.C., Elliott, J.A., and Clyne, T.W.: Analysis of tomography images of bonded fibre networks to measure distributions of fibre segment length and fibre orientation. Adv. Eng. Mater. 8, 495 (2006).CrossRefGoogle Scholar
Buffière, J.Y., Maire, E., Adrien, J., Masse, J.P., and Boller, E.: In situ experiments with x ray tomography: An attractive tool for experimental mechanics. Exp. Mech. 50, 289 (2010).CrossRefGoogle Scholar
Latil, P., Orgéas, L., Geindreau, C., Dumont, P.J.J., and Rolland du Roscoat, S.: Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres. Compos. Sci. Technol. 71(4), 480 (2011).CrossRefGoogle Scholar