Skip to main content Accessibility help
×
Home

Measurement and interpretation of strain relaxation in passivated Al–0.5% Cu lines

  • Paul R. Besser (a1), Thomas N. Marieb (a2), Jin Lee (a2), Paul A. Flinn (a3) and John C. Bravman (a4)...

Abstract

X-ray diffraction has been used to measure the strain relaxation in passivated Al–0.5% Cu lines at 200 °C after cooling directly from an anneal at the passivation deposition temperature of 380 °C. Fits to the measured X, Y, and Z components of strain are summed to obtain the hydrostatic component, which exhibits a decay over time. Three mechanisms are considered to explain the decay of the hydrostatic strain in the metal line: Cu precipitation from the solid solution, the presence and growth of voids in the lines, and time-dependent deformation of the passivation. Calculations of the effect of Cu precipitation from the solid solution demonstrate that it plays an insignificant role in the relaxation. A high-voltage scanning electron microscope is used to image the presence and growth of voids through the passivation. The time scale of the growth of stress-induced voids is not the same as the hydrostatic relaxation, indicating that voiding is not solely responsible for the observed relaxation. The relaxation of the line is modeled using a time-dependent finite element model, allowing elastic compliance of the passivation. The magnitude of the calculated relaxation agrees with the measurements. It is suggested that a combination of voiding and passivation compliance is responsible for the measured hydrostatic strain relaxation in the metal line.

Copyright

References

Hide All
1.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67 (8), 29272931 (1990).
2.Greenebaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58 (17), 18451847 (1991).
3.Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., in 1990 Int. Reliability Physics Symp. Proc. (IEEE, New York, 1990), pp. 221229.
4.Hosoda, T., Niwa, H., Yagi, H., and Tsuchikawa, H., in 1991 Int. Reliability Physics Symp. Proc. (IEEE, New York, 1991), pp. 7783.
5.Hinode, K., Asano, I., Ishiba, T., and Homma, Y., J. Vac. Sci. Technol. B 8 (3), 495498 (1990).
6.Besser, P. R., Sauter Mack, A., Fraser, D. B., and Bravman, J.C., J. Electrochem. Soc. 140 (6), 17691772 (1993).
7.Flinn, P. A., First International Conference on Stress Induced Phenomena in Metallization, edited by Li, C. Y., Totta, P., and Ho, P. S., American Vacuum Society Conference Proceedings (American Institute of Physics, New York, 1992).
8.Flinn, P. A., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), pp. 312.
9.Besser, P. R., Brennan, S., and Bravman, J. C., J. Mater. Res. 9, 13 (1994).
10.Besser, P. R., Marieb, T. N., and Bravman, J. C., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 249254.
11.Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 17491755 (1988).
12.Besser, P. R., Venkatraman, R., Brennan, S., and Bravmen, J.C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Syp. Proc. 239, Pittsburgh, PA, 1992), pp. 233238.
13.Murray, J. L., Int. Metals Rev. 130 (5), 211233 (1985).
14.Lankes, J. C. and Wassermann, G., Z. Metallk. 41, 381391 (1950).
15.Thomas, G. and Whelan, M. J., Philos. Mag. Ser. 8 (6), 11031114 (1960).
16.Venkatraman, R., Bravman, J. C., Nix, W. D., Davies, P. W., Flinn, P. A., and Fraser, D. B., J. Electron. Mater. 19, 12311238 (1990).
17.Michael, J. R., Romig, A. D. Jr, and Frear, D. R., in Structure/Property Relationships for Metal/Metal Interfaces, edited by Roming, A. D. Jr, Fowler, D. E., and Bristowe, P. D. (Mater. Res. Soc. Symp. Proc. 229, Pittsburgh, PA, 1991), pp. 303308.
18.Frear, D. R., Sanchez, J.E. Jr, Romig, A. D. Jr, and Morris, J.W., Metall. Trans. A 21A, 24492458 (1990).
19.Besser, P. R., Venkatraman, R., Brennan, S., and Bravman, J.C., in Applications of Synchrotron Radiation Techniques to Materials Science, edited by Perry, D. L., Perry, N. D., Shinn, N. D., Stockbauer, R. L., D'Amico, K. L., and Terminello, L. J. (Mater. Res. Soc. Symp. Proc. 307, Pittsburgh, PA, 1993), pp. 161166.
20.Besser, P. R., Madden, M. C., and Flinn, P. A., J. Appl. Phys. 72 (8), 37923798 (1992).
21.Madden, M. C., Abratowski, E. A., Marieb, T., and Flinn, P. A., in Materials Reliability in Microelectronics II, edited by Thompson, C. V. and Lloyd, J. R. (Mater. Res. Soc. Symp. Proc. 265, Pittsburgh, PA, 1992), pp. 3338.
22.Marieb, T., Abratowski, E. V., Bravman, J. C., Madden, M. C., and Flinn, P. A., in Second International Conference on Stress Induced Phenomena in Metallization, edited by Ho, P. S. and Li, C. Y., American Vacuum Society Conference Proceedings (American Institute of Physics, New York, 1993).
23.Follstaedt, D. M., van den Avyle, J. A., Romig, A. D., and Knapp, J.A., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J. R., Yost, F. G., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 225, Pittsburgh, PA, 1992), pp. 225231.
24.Korhonen, M. A., Paszkiet, C. A., and Li, C-Y, J. Appl. Phys. 69 (12), 80838091 (1991).
25.Flinn, P. A., J. Mater. Res. 6, 1498 (1991).
26.Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989), Vol. 2.

Measurement and interpretation of strain relaxation in passivated Al–0.5% Cu lines

  • Paul R. Besser (a1), Thomas N. Marieb (a2), Jin Lee (a2), Paul A. Flinn (a3) and John C. Bravman (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed