Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-22T01:35:27.588Z Has data issue: false hasContentIssue false

Magnetotransport properties of La0.7Ca0.3MnO3 thick films prepared by spray pyrolysis

Published online by Cambridge University Press:  26 November 2012

F. Damay
Affiliation:
Materials Department, Imperial College, London SW7 2BP, United Kingdom, and Experimental Solid State, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
J. L. MacManus-Driscoll
Affiliation:
Materials Department, Imperial College, London SW7 2BP, United Kingdom
L. F. Cohen
Affiliation:
Experimental Solid State, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
Get access

Abstract

A spray pyrolysis deposition technique has been used to prepare thick films of half-metallic ferromagnet La0.7Ca0.3MnO3 on LaAlO3 (001) and yttria-stabilized zirconia Y–ZrO2 (100) single-crystal substrates. The films deposited on LaAlO3 (001) exhibited a high degree of crystallinity with both in-plane and out-of-plane texture and a very sharp insulator to metal transition at TIM = 270 K. The intrinsic magnetoresistance (MR) reaches 70% at TIM in 3 T, a similar value as in the bulk material of the same composition. The extrinsic intergrain MR, however, is only 0.5% at 40 K in 3 T, 50 times smaller than for the bulk. By contrast, films grown on YSZ single crystals have a broad insulator to metal transition at a lower TIM of approximately 220 K and poor intrinsic MR. They show however an extrinsic MR as large as in the bulk. The extrinsic MR is interpreted as arising from crystalline and magnetic disorder at the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Evetts, J.E., Blamire, M.G., Mathur, N.D., Isaac, S.P., Teo, B-S., Cohen, L.F., and MacManus-Driscoll, J.L., Philos. Trans. R. Soc. London A 356, 1593 (1998).CrossRefGoogle Scholar
2.Mooney, J.B. and Radding, S.B., Annu. Rev. Mater. Sci. 12, 81 (1982).CrossRefGoogle Scholar
3.Raju, A.R., Aiyer, H.N., Venkata Nagaraju, B., Mahendiren, R., Raychaudhuri, A.K., and Rao, C.N.R., J. Phys. D: Appl. Phys. 30, L71 (1997).CrossRefGoogle Scholar
4.Moshnyaga, V., Khoroshun, I., Sidorenko, A., Petrenko, P., Weidinger, A., Zeitler, M., Rauschenbach, B., Tidecks, R., and Samwer, K., Appl. Phys. Lett. 74, 2842 (1999).Google Scholar
5.Singh, H.K., Khare, N., Siach, P.K., and Srivastava, O.N., J. Phys. D: Appl. Phys. 33, 921 (2000).CrossRefGoogle Scholar
6.Gillman, E.S., Li, M., and Dahmen, K-H., J. Appl. Phys. 84, 6217 (1998).CrossRefGoogle Scholar
7.Zhao, B., Zhang, R., Lu, L., and Xie, H., Mater. Sci. Eng. B 49, 36 (1997).Google Scholar
8.Kang, Y.C. and Park, S.B., J. Mater. Sci. Lett. 16, 1201 (1997).Google Scholar
9.Fukui, T., Obuchi, T., Ikuhara, Y., Ohara, S., and Kodera, K., J. Am. Ceram. Soc. 80, 261 (1997).Google Scholar
10.Messing, G.L., Zhang, S-C., and Jayanthi, G.V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
11.Akther Hossain, A.K.M., Cohen, L.F., Berenov, A., and MacManus-Driscoll, J.L., Mater. Sci. Eng. B 77, 261 (2000).Google Scholar
12.Damay, F., Cohen, L.F., MacManus-Driscoll, J.L., Freitas, R.S., and Ghivelder, L., J. Magn. Magn. Mater. 214, L149 (2000).Google Scholar
13.Akther Hossain, A.K.M., Cohen, L.F., Damay, F., Berenov, A., MacManus-Driscoll, J.L., Alford, N.McN., Mathur, N.D., Blamire, M.G., and Evetts, J.E., J. Magn. Magn. Mater. 192, 263 (1999).CrossRefGoogle Scholar
14.Mahesh, R., Mahendiran, R., Raychaudhuri, A.K., and Rao, C.N.R., Appl. Phys. Lett. 68, 2291 (1996).CrossRefGoogle Scholar
15.Lee, S., Hwang, H.Y., Shraiman, Boris I., Ratcliff, W.D. II, and Cheong, S-W., Phys. Rev. Lett. 82, 4508 (1999).CrossRefGoogle Scholar