Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:01:24.463Z Has data issue: false hasContentIssue false

Magnetic properties of undoped and Co-doped n-type β–FeSi2.5 single crystals

Published online by Cambridge University Press:  31 January 2011

E. Arushanov
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden, Germany, and Institute of Applied Physics, Academy of Sciences of Moldova, 277028 Kishinev, Moldova
L. Ivanenko
Affiliation:
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
D. Eckert
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
G. Behr
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
U. K. Rößler
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
K-H. Müller
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
C. Schneider
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
J. Schumann
Affiliation:
Institute of Solid State and Materials Research Dresden, P.O. Box 270016, D-011171 Dresden Germany
Get access

Abstract

Results of magnetization and magnetic susceptibility measurements on undoped and Co-doped FeSi2.5 single crystals are presented. The temperature dependence of the magnetic susceptibility of the Co-doped sample in the range of 5–300 K can be explained by temperature-dependent contributions due to paramagnetic centers and the carriers excited thermally in the extrinsic conductivity region. The values of the paramagnetic Curie temperature and activation energy of the donor levels were estimated. It is also shown that the magnetic susceptibility of Co-doped samples cooled in zero external field and in a field are different. This resembles the properties of spin-glasses and indicates the presence of coupling between magnetic centers.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Semiconducting Silicides, edited by Borisenko, V. (Springer, Berlin, Germany, 2000).Google Scholar
2.Lange, H., Phys. Status Solidi B 201, 3 (1997).3.0.CO;2-W>CrossRefGoogle Scholar
3.Heinrich, A., Behr, G., Griessmann, H., Teichert, S., and Lange, H., in Thermoelectric Materials—New Directions and Approaches, edited by Tritt, T.M., Kanatzidis, M.G., Lyons, H.B. Jr., and Mahan, G.D. (Mater. Res. Soc. Symp. Proc. 478, Warrendale, PA, 1997), p. 255.Google Scholar
4.Leong, D., Harry, M., Reeson, K.J., and Homewood, K.P., Nature (London) 387, 686 (1997).Google Scholar
5.Suemasu, T., Negishi, Y., Takakura, K., and Nasegawa, F., Jpn. J. Appl. Phys., Part 2 39, L1013 (2000).Google Scholar
6.Birkholz, U. and Frühauf, A., Phys. Status Solidi A 34, K81 (1969).Google Scholar
7.Valassiades, O., Dimitriadis, C.A., and Werner, J.H., J. Appl. Phys. 70, 890 (1991).CrossRefGoogle Scholar
8.Arushanov, E., Kloc, Ch., Hohl, H., and Bucher, E., J. Appl. Phys. 75, 5106 (1994).CrossRefGoogle Scholar
9.Arushanov, E., Respaud, M., Broto, J.M., Kloc, Ch., Leotin, J., and Bucher, E., Phys. Rev. B 53, 5108 (1996).CrossRefGoogle Scholar
10.Fedorov, M., Zaitsev, V., Eremin, I., Kartenko, N., Konstantinov, P., Popov, V., Kurisu, M., Nakamoto, G., and Souma, T., Proceedings of the 20th International Conference on Thermoelectrics, edited by Zhang, J. (IEEE, Piscataway, NJ, 2001), p. 214.Google Scholar
11.Tagaya, K., Hayashi, Y., Maeda, Y., Umezawa, K., and Miyake, K., Jpn. J. Appl. Phys. 39, 4751 (2000).CrossRefGoogle Scholar
12.Brehme, S., Behr, G., and Heinrich, A., J. Appl. Phys. 89, 3798 (2001).CrossRefGoogle Scholar
13.Teichert, S., Beddies, G., Tomm, Y., Hinneberg, H-J., and Lange, H., Phys. Status Solidi A 152, K15 (1995).CrossRefGoogle Scholar
14.Lengsfeld, P., Brehme, S., Ehlers, G., Lange, H., Stusser, N., Tomm, Y., and Fuhs, W., Phys. Rev. B 58, 16154 (1998).CrossRefGoogle Scholar
15.Irmscher, K., Gehlhoff, W., Tomm, Y., Lange, H., and Alex, V., Phys. Rev. B 55, 4417 (1997).CrossRefGoogle Scholar
16.Miki, T., Matsui, Y., Matsubara, K., and Kishimoto, K., J. Appl. Phys. 75, 1693 (1994).CrossRefGoogle Scholar
17.Aksenov, I., Katsumata, H., Makita, Y., Kimura, Y., Shinzato, T., and Sato, K., J. Appl. Phys. 80, 1678 (1996).CrossRefGoogle Scholar
18.Behr, G., Werner, J., Weise, G., Heinrich, A., Burkov, A., and Gladun, C., Phys. Status Solidi A 160, 549 (1997).3.0.CO;2-8>CrossRefGoogle Scholar
19.Heinrich, A., Griessmann, H., Behr, G., Ivanenko, K., Schumann, J., and Vinzelberg, H., Thin Solid Films 381, 287 (2001).CrossRefGoogle Scholar
20.Tani, J. and Kido, H., J. Appl. Phys. 84, 1408 (1998).CrossRefGoogle Scholar
21.Ivanov-Omskii, V.I., Kolomiets, B.T., Ogorodnikov, V.K., Yu.V. Rud, and Tsmots, V.M., Phys. Status Solidi B 13, 61 (1972).CrossRefGoogle Scholar
22.Biswas, S. and Bhattacharya, R., Phys. Status Solidi B 159, 851 (1990).CrossRefGoogle Scholar
23.Mattheii, L. and Harmon, D., Phys. Rev. B 47, 13114 (1993).CrossRefGoogle Scholar
24.Manyala, N., Sidis, Y., Ditusa, J.F., Aeppli, G., Young, D.P., and Fisk, Z., Nature 404, 581 (2000).CrossRefGoogle Scholar
25.Blakemore, J.S., Semiconductor Statistics (Pergamon, Oxford, U.K., 1962).Google Scholar
26.Geist, D., Phys. Status Solidi B 46, 283 (1971).CrossRefGoogle Scholar
27.Arushanov, E., Kloc, Ch., and Bucher, E., Phys. Rev. B 50, 2653 (1994).CrossRefGoogle Scholar
28.Lashkul, A., Lähderanta, E., and R. Laiho, Phys. Rev. B 46, 6251 (1992).CrossRefGoogle Scholar