Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T20:10:36.914Z Has data issue: false hasContentIssue false

Magnetic Properties and Magnetization Reversal of Sm–Co(3x nm)/Co(x nm) Multilayered Films

Published online by Cambridge University Press:  03 March 2011

Cai-Yin You*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology (RIST), 790-330 Pohang, South Korea
ChoongJin Yang
Affiliation:
Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology (RIST), 790-330 Pohang, South Korea
Z.D. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
JongSoo Han
Affiliation:
Electromagnetic Materials Laboratory, Research Institute of Industrial Science and Technology (RIST), 790-330 Pohang, South Korea
X.K. Sun
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: cyyou@imr.ac.cn
Get access

Abstract

[Sm–Co (3x nm) /Co (x nm)]10 (x = 10, 7, 4) multilayered films have been prepared by magnetron rf-sputtering. It is found that the thickness of both hard and soft layers has important effects on phase transformation and magnetic interaction of films. With a fixed ratio of hard- to soft-layer thickness, decreasing simultaneously the thickness of these layers results in increasing coercivity. The effects of the external magnetic field during annealing depend on the Co-layer thickness (x value), mainly because of the formation of different main phases for different thickness of Co layer. For the films with x = 10 and 7, the main phase is Sm2Co17 after annealed. Applying a magnetic field during annealing promotes the crystallization of films, and therefore, it increases the coercivity of the films with x = 10 and 7. Magnetic interaction has been investigated by measuring δm and remanence magnetization. All the films show that although the exchange coupling favorable for magnetization is significant, the increase of the coercivity mainly originates from improving the pinning effects. Temperature dependence of the coercivity supports that the pinning of domain-walls constitutes a control mechanism of the coercivity. This behavior can be well understood in terms of the Gaunt’s approach of the coercivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cadieu, F.J., Cheung, T.D., Aly, S.H., Wickramasekara, L. and Ririch, R.G., J. Appl. Phys. 53, 8338 (1982).CrossRefGoogle Scholar
2Hegde, H., Samarasekara, P., Rani, R., Navarathna, A., Tracy, K. and Cadieu, F.J., J. Appl. Phys. 76, 6760 (1994).CrossRefGoogle Scholar
3Rani, R., Cadieu, F.J., Qian, X.R., Mendoza, W.A. and Shaheen, S.A., J. Appl. Phys. 81, 5634 (1997).CrossRefGoogle Scholar
4Fullerton, E.E., Sowers, C.H., Pearson, J., Bader, S.D., Wu, X.Z. and Lederman, D., Appl. Phys. Lett. 69, 2438 (1996).CrossRefGoogle Scholar
5Fullerton, E.E., Jiang, J.S., Rehm, C., Sowers, C.H., Bader, S.D., Patel, J.B. and Wu, X.Z., Appl. Phys. Lett. 71, 1579 (1997).CrossRefGoogle Scholar
6Fullerton, E.E., Jiang, J.S., Sowers, C.H., Pearson, J.E. and Bader, S.D.: Appl. Phys. Lett. 72, 380 (1998).CrossRefGoogle Scholar
7Liu, J.P., Liu, Y., Skomski, R. and Sellmyer, D.J., J. Appl. Phys. 85, 4812 (1999).CrossRefGoogle Scholar
8Andreescu, R. and O’Shea, M.J., International Journal of Modern Physics B 15, 3243 (2001).CrossRefGoogle Scholar
9Liu, W., Zhang, Z.D., Liu, J.P., Chen, L.J., He, L.L., Liu, Y., Sun, X.K. and Sellmyer, D.J., Adv. Mater. 14, 1832 (2002).CrossRefGoogle Scholar
10Gaunt, P., J. Appl. Phys. 45, 637 (1972).CrossRefGoogle Scholar
11Wohlfarth, E.P., J. Appl. Phys. 29, 595 (1958).CrossRefGoogle Scholar
12Mayo, R.I., O’Grady, K., Kelly, P.E., Cambridge, J., Sanders, I.L., Yogi, T. and Chantrell, R.W., J. Appl. Phys. 69, 4733 (1991).CrossRefGoogle Scholar
13Al-Omari, I.A. and Sellmyer, D.J., Phys. Rev. B 52, 3441 (1995).CrossRefGoogle Scholar
14Zhang, H-w., Rong, C-b., Zhang, J., Zhang, S-y. and Shen, B-g., Phys. Rev. B 66, 184436 (2002).CrossRefGoogle Scholar
15Tang, H., Liu, Y. and Sellmyer, D.J., J. Magn. Magn. Mater. 241, 345 (2002).CrossRefGoogle Scholar
16Gao, Y., Zhu, J., Weng, Y., Park, E. and Yang, CJ., J. Magn. Magn. Mater. 191, 146 (1999).CrossRefGoogle Scholar
17Street, R. and Woolley, J.C., Proc. Phys. Soc. Sect. A 62, 562 (1949).CrossRefGoogle Scholar
18Wohlfarth, E.P., J. Phys. F: Met. Phys. 14, L155 (1984).CrossRefGoogle Scholar
19Singleton, E.W., Shan, Z.S., Yeong, Y.S. and Sellmyer, D.J., IEEE Trans. Magn. 31, 2743 (1995).CrossRefGoogle Scholar
20Liu, Y., Robertson, B.W., Shan, Z.S., Liou, S.H. and Sellmyer, D.J., J. Appl. Phys. 77, 3837 (1995).Google Scholar
21Yang, C-J., You, C-Y., Zhang, Z.D., Kim, K-S. and Han, J-S., J. Magnetics (South Korea) 7, 45 (2002).Google Scholar
22Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
23McCurrie, R.A.: Ferromagnetic Materials, edited by Wohlfarth, E.P. (North-Holland, Amsterdam, 1982), pp. 121, 149.Google Scholar
24Zhang, Z.D., Liu, W., Liu, J.P. and Sellmyer, D.J., J. Phys. D Appl. Phys. 33, R217 (2000).CrossRefGoogle Scholar
25Fearon, M., Chantrell, R.W. and Wohlfarth, E.P., J. Magn. Magn. Mater. 86, 197 (1990).CrossRefGoogle Scholar
26Prados, C. and Hadjipanayis, G.C., Appl. Phys. Lett. 74, 430 (1999).CrossRefGoogle Scholar
27Strnat, K.J. and Strnat, R.M.W., J. Magn. Magn. Mater. 100, 38 (1991).CrossRefGoogle Scholar
28Shan, Z.S., Malhotra, S.S., Liou, S.H., Liu, Yi, Yu, M. and Sellmyer, D.J., J. Magn. Magn. Mater. 161, 323 (1996).CrossRefGoogle Scholar
29Fullerton, E.E., Sowers, C.H., Pearson, J.E., Bader, S.D., Patel, J.B., Wu, X.Z. and Lederman, D., J. Appl. Phys. 81, 5637 (1997).CrossRefGoogle Scholar
30Livingston, J.D. and McConnell, M.D., J. Appl. Phys. 43, 4756 (1972).CrossRefGoogle Scholar
31Buschow, K.H.J. and Van der Kraan, A.M., J. Magn. Magn. Mater. 22, 220 (1981).CrossRefGoogle Scholar
32Coat, J.J., J. Appl. Phys. 52, 2509 (1981).Google Scholar
33Bo, Y.X. and Miyazaki, T., J. Magn. Magn. Mater. 86, 37 (1990).Google Scholar