Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T02:41:04.390Z Has data issue: false hasContentIssue false

Macrosegregation of Y2Ba1Cu1O5 particles in Y1Ba2Cu3O7−δ crystals grown by an undercooling method

Published online by Cambridge University Press:  31 January 2011

A. Endo
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
H. S. Chauhan
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
T. Egi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
Get access

Abstract

Macrosegregation of Y2Ba1Cu1O5 (Y211) particles was observed in Pt-added Y1Ba2Cu3O7−δ (Y123) crystals grown by an undercooling method. It was found that the macrosegregation of Y211 particles depended on the growth direction and the growth rate (R) as a function of undercooling (ΔT). The amount of Y211 particles in Y123 crystals grown at large R was larger than at small R. Also, the amount of Y211 in Y123 growing along the a-direction was larger than that along the c-direction. Further, it was noted that the smaller Y211 particles in size were distributed in Y123 grown at large R. These phenomena could be at least qualitatively explained by the prevalent trapping/pushing theory. In the direct observation of magnetic flux with the Faraday effect of iron garnet film, the flux pinning force was found to be in good agreement with the macrosegregation of Y211 particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T.H., Sherwood, R. C., van Dover, R.B., Davis, M. E., Kammlott, G. W., and Fastnacht, R.A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Advances in Superconductivity II, 285 (1990).CrossRefGoogle Scholar
4.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
5.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
6.Cima, M.J., Flemings, M.C., Figuredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
7.Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
8.Nakamura, Y., Izumi, T., and Shiohara, Y., Advances in Superconductivity V, 585 (1993).Google Scholar
9.Ohtsu, K., Yamada, Y., Izumi, T., Nakamura, Y., and Shiohara, Y., Advances in Superconductivity V, 581 (1993).Google Scholar
10.Izumi, T., Ohtsu, K., Nakamura, Y., and Shiohara, Y., Advances in Superconductivity V, 577 (1993).Google Scholar
11.Endo, A., Chauhan, H.S., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 11 (5) (1996, in press).Google Scholar
12.Yamada, Y., Nakamura, M., Shiohara, Y., and Tanaka, S., J. Cryst. Growth 148, 241 (1995).CrossRefGoogle Scholar
13.Cima, M.J., Rigby, K., Flemings, M.C., Haggerty, J. S., Homjo, S., Shen, H., and Sung, T.H., Extended Abstracts—Int. Workshop on Superconductivity, Maui, Hawaii (1995), p. 55.Google Scholar
14.Endo, A., Chauhan, H.S., Nakamura, Y., and Shiohara, Y., Extended Abstacts—Int. Workshop on Superconductivity, Maui, Hawaii (1995), p. 59.Google Scholar
15.Kim, C-J., Kim, K-B., Hong, G-W., and Lee, H-Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
16.Sawano, K., Morita, M., Tanaka, M., Sakai, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).CrossRefGoogle Scholar
17.Meng, R. L., Gao, L., Gautier-Picard, P., Ramirez, D., Sun, Y. Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
18.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
19.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1991).CrossRefGoogle Scholar
20.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
21.Cahn, J. W. and Fullman, R. L., Trans. AIME 206, 610 (1956).Google Scholar
22.Gotoh, S., Koshizuka, N., Yoshida, M., Murakami, M., and Tanaka, S., Jpn. J. Appl. Phys. 29, L1083 (1990).CrossRefGoogle Scholar
23.Gotoh, S. and Koshizuka, N., Physica C 176, 300 (1991).CrossRefGoogle Scholar
24.Wong, W., Paretzkin, B., and Fuller, E. R. Jr., J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
25.Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowichi, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
26.Hazan, R. M., Finger, L. W., Angle, R. J., Prewitt, C. T., Ross, N. L., Mao, H. K., Hadidiacos, C.G., Hor, P.H., Meng, R.L., and Chu, C.W., Phys. Rev. B 35, 7238 (1987).CrossRefGoogle Scholar
27.Uhlmann, D. R., Chalmers, B., and Jackson, K. A., J. Appl. Phys. 35, 2986 (1964).CrossRefGoogle Scholar
28.Bolling, G. F. and Cissé, J., J. Cryst. Growth 10, 56 (1971).CrossRefGoogle Scholar
29.Chernov, A. A., Temkin, D. E., and Mel'nikova, A. M., Sov. Phys. Crystallogr. 21, 369 (1976).Google Scholar
30.Shangguan, D., Ahuja, S., and Stefanescu, D. M., Metall. Trans. A 23A, 669 (1992).CrossRefGoogle Scholar
31.Grigoryan, S. G., Oganesyan, A. S., and Sarkisyan, A. G., Kristal-lografiya [Sov. Phys. Crystallogr.] 28, 782 (1983).Google Scholar
32.Potoschke, J. and Rogge, V., J. Cryst. Growth 94, 726 (1989).CrossRefGoogle Scholar
33.Fedorov, O. P., Growth of Crystals 18, 169 (1992).CrossRefGoogle Scholar