Skip to main content Accessibility help

Luminescent properties of Y2O3:Eu3+ nanophosphor prepared from urea added precursor using flame spray pyrolysis

  • Jae Seok Lee (a1), Se Jin Kim, Tae Kon Kim, Rajiv K. Singh (a1) and Madhav B. Ranade (a2)...


Y2O3:Eu3+ nanophosphor was synthesized by flame spray pyrolysis (FSP) from urea added nitrate based liquid precursor. In this study, urea serves as fuel and subsequently provides additional heat in the flame zone during the synthesis of phosphor particles. The end product shows cubic phase Y2O3:Eu3+ nanophosphor successfully prepared by FSP without heat treatment. The influence of synthesis conditions such as different mol of urea and nitrate source materials in aqueous solution, and doping concentration on luminescent properties, were investigated. The characteristics of nanophosphor such as crystallinity and morphology under various experiments of conditions were carried out by x-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM). The particle size of product was found to be in the range of 20–30 nm from transmission electron microscopy (TEM). In photoluminescence (PL) properties, Y2O3:Eu3+ nanophosphor emitted red light with a peak wavelength of 609 nm when excited with 398 nm wavelength photons.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer, Berlin, 1994).
2Bhargava, R.N., Gallagher, D., Hong, X., and Nurmikko, A.: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994).
3Goldburt, E.T., Kulkarni, B., Bhargava, R., Taylor, J., and Libera, M.: Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J. Lumin. 190, 72 (1997).
4Hong, S.J., Kwak, M.G., and Han, J.I.: Optimization of solvent condition for highly luminescent Y2O3:Eu3+ nanophosphor. Curr. Appl. Phys. 6S1, e211 (2006).
5Purwanto, A., Lenggoro, I.W., Chang, H., and Okuyama, K.: Preparation of submicron- and nanometer-sized particles of Y203:Eu3+by flame spray pyrolysis using ultrasonic and two-fluid atomizers. J. Chem. Eng. Jpn. 39, 68 (2006).
6Chang, H., Lenggoro, I.W., Okuyama, K., and Kim, T.O.: Continuous single-step fabrication of nonaggreated, size-controlled and cubic nanocrystalline Y20:Eu3+ phosphors using flame spray pyrolysis. Jpn. J. Appl. Phys. 43, 3535 (2004).
7Lu, C.H., Hsu, W.T., Dhanaraj, J., and Jagannathan, R.: Sol–gel pyrolysis and photoluminescent characteristics of europium-ion doped yttrium aluminum garnet nanophosphors. J. Eur. Ceram. Soc. 24, 3723 (2004).
8Sharma, P.K., Jilavi, M.H., Nass, R., and Schmidt, H.: Tailoring the particle size from μm→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J. Lumin. 82, 187 (1999).
9Chiang, C.C., Tsai, M.S., Hsiao, C.S., and Hon, M.H.: Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes. J. Alloys Compd. 416, 265 (2006).
10Yang, Z., Li, X., Yang, Y., and Li, X.: The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion. J. Lumin. 122–123, 707 (2007).
11Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).
12Ofelt, G.S.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).
13Hirata, G.A., McKittrick, J., Avalos-Borja, M., Siqueiros, J.M., and Devlin, D.: Physical properties of Y20:Eu luminescent films grown by MOCVD and laser ablation. Appl. Surf. Sci. 113/114, 509 (1997).
14Qin, X., Ju, Y., Bernhard, S., and Yao, N.: Flame synthesis of Y20: Eu nanophosphors using ethanol as precursor solvents. J. Mater. Res. 20, 2960 (2005).
15Kwak, M.G., Park, J.H., and Shon, S.: Synthesis and properties of luminescent Y203:Eu (15–25 wt%) nanocrystals. Solid State Commun. 130, 199 (2004).
16Tao, Y., Zhao, G.W., Zhang, W.P., and Xia, S.D.: Combustion synthesis and photoluminescence of nanocrystalline Y203:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).
17Kang, Y.C., Lenggoro, I.W., Park, S.B., and Okuyama, K.: YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis. Mater. Res. Bull. 35, 789 (2000).


Related content

Powered by UNSILO

Luminescent properties of Y2O3:Eu3+ nanophosphor prepared from urea added precursor using flame spray pyrolysis

  • Jae Seok Lee (a1), Se Jin Kim, Tae Kon Kim, Rajiv K. Singh (a1) and Madhav B. Ranade (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.