Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T18:48:41.020Z Has data issue: false hasContentIssue false

Lower crystallization temperature of sol-gel PbTiO3 on Ti/Pt-coated substrates

Published online by Cambridge University Press:  31 January 2011

R. E. Avila*
Affiliation:
Departamento de Investigación y Desarrollo, Commisi ón Chilena de Energía Nuclear, Cas. 188-D, Santiago, Chile
T. P. Velilla
Affiliation:
Departamento de Química, FCFM, Universidad de Chile, Santiago, Chile
P. J. Retuert
Affiliation:
Departamento de Química, FCFM, Universidad de Chile, Santiago, Chile
Get access

Abstract

PbTiO3 (PT) thin films have been deposited by sol-gel on Pt/Si, SiO2/Si, Pt/Ti/SiO2/Si, and Ti/Pt/Ti/SiO2/Si and annealed for 45 min in the 400–670 °C range. Analysis by x-ray diffraction (XRD) and spectroscopic ellipsometry shows that the Ti overlayer promotes early crystallization in the tetragonal perovskite phase, reducing the presence of a second phase, tentatively identified as pyrochlore, starting by 450 %C. The refractive index and extinction coefficient (n, k) of the PT film increase rapidly with the sintering temperature in the range of 450–570 °C and saturate by 570 °C to values of n varying from 2.4 to 2.9, and k from 0.03 to 0.3, over the 1.65–2.95 eV range. Most of the increase of n is related to thin film densification.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, J-L., Chen, H-M., and Lee, J.Y. M., Appl. Phys. Lett. 69, 4011 (1996).CrossRefGoogle Scholar
2.Al-Shareef, H. N., Kingon, A. I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
3.Fox, G. R., Trolier-McKinstry, S., and Krupanidhi, S. B., J. Mater. Res. 10, 1508 (1995).CrossRefGoogle Scholar
4.Summerfelt, S. R., Kotecki, D., Kingon, A., and Al-Shareef, H. N., in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 257.Google Scholar
5.Aoki, K., Fukuda, Y., Numata, K., and Nishimura, A., Jpn. J. Appl. Phys. 34, 192 (1995).CrossRefGoogle Scholar
6.Amanuma, M., Mori, T., Hase, T., Sakuma, T., Ochi, A., and Miyaska, Y., Jpn. J. Appl. Phys. 32, 4150 (1993).CrossRefGoogle Scholar
7.Sameshima, K., Nakamura, T., Hoshiba, K., Nakao, Y., Kamisawa, A., Atsuki, T., Soyama, N., and Ogi, K., Jpn. J. Appl. Phys. 32, 4144 (1993).CrossRefGoogle Scholar
8.Takahashi, Y., Matsuoka, Y., Yamaguchi, K., Matsuki, M., and Kobayashi, K., J. Mater. Sci. 25, 3960 (1990).CrossRefGoogle Scholar
9.Retuert, P. J., Vellilla, T. P., Avila, R. E., and Martin, V. del C., Boletín de la Soceidad Chilena de Química 40, 343 (1995).Google Scholar
10.Hatanaka, T. and Hasegawa, H., Jpn. J. Appl. Phys., Part I, 31, 3245 (1992).CrossRefGoogle Scholar
11.J.A. Woollam Co., M-44 System Documentation (1996).Google Scholar
12.Tompkins, H. G., A User's Guide to Ellipsometry (Academic Press, San Diego, CA, 1993).Google Scholar
13.Trolier-McKinstry, S., Chindaudom, P., Vedam, K., and Newnham, R. E., in Physics of Thin Films, edited by Vedam, K. (Academic Press, San Diego, CA, 1994), p. 249.Google Scholar
14.Wöhlecke, M., Marrello, V., and Onton, A., J. Appl. Phys. 48, 1748 (1977).CrossRefGoogle Scholar