Skip to main content Accessibility help

A low-cost processing of CuIn(SexS1−x)2 films: Using sulfides nanoparticle precursors

  • Jing Qian (a1), Guilin Chen (a1), Wen Wang (a1) and Guoshun Jiang (a1)


Most CuIn(SexS1−x)2 (CISS) thin films are deposited via conventional two-stage process. However, a significant problem related to the conventional two-stage process is the separation of CuInSe2 and CuInS2 phases. In this article, single-phase CISS thin films have been successfully prepared by selenizing sulfides of copper and indium. The mixed sulfides of Cu–In precursors were synthesized by coprecipitation method and then partly reduced. The inks containing partly reduced powders and organic binders were deposited onto glass substrate using a spin-coating technique. After coating, the precursor films were selenized to get CISS. X-ray diffraction and energy dispersive x-ray spectroscopy data show that the single (112) peak position changed with the variation of Se/S ratio. The absorption energy Egchanges linearly with Se/(Se + S) calculated by ultraviolet–vis absorption spectra. Those results confirm the formation of single-phase CISS with homogenous composition.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Guo, Q., Kim, S.J., Kar, M., Shafarman, W.N., Birkmire, R.W., Stach, E.A., Agrawal, R., and Hillhouse, H.W.: Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8(9), 2982 (2008).
2.Ahn, S., Son, T.H., Cho, A., Gwak, J., Yun, J.H., Shin, K., Ahn, S.K., Park, S.H., and Yoon, K.: CuInSe2 thin-film solar cells with 7.72% efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution. ChemSusChem 5(9), 1773 (2012).
3.Tang, J., Hinds, S., Kelley, S.O., and Sargent, E.H.: Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem. Mater. 20(22), 6906 (2008).
4.Wu, Y., Wadia, C., Ma, W., Sadtler, B., and Alivisatos, A.P.: Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8(8), 2551 (2008).
5.Wu, J.D., Wang, L.T., and Gau, C.: Synthesis of CuInGaSe2 nanoparticles by modified polyol route. Sol. Energy Mater. Sol. Cells 98, 404 (2012).
6.Yamazoe, S., Kou, H., and Wada, T.: A structural study of Cu-In-Se compounds by x-ray absorption fine structure. J. Mater. Res. 26(12), 1504 (2011).
7.Kaelin, M., Rudmann, D., Kurdesau, F., Meyer, T., Zogg, H., and Tiwari, A.N.: CIS and CIGS layers from selenized nanoparticle precursors. Thin Solid Films 431, 58 (2003).
8.Bandyopadhyaya, S., Roy, S., Chaudhuri, S., and Pal, A.K.: CuIn(SxSe1-x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers. Vacuum 62(1), 61 (2001).
9.Liu, W., Mitzi, D.B., Yuan, M., Kellock, A.J., Chey, S.J., and Gunawan, O.: 12% efficiency CuIn(Se,S)2 photovoltaic device prepared using a hydrazine solution process. Chem. Mater. 22(3), 1010 (2010).
10.Bekker, J.: Band-gap engineering in CuIn(Se, S)2 absorbers for solar cells. Sol. Energy Mater. Sol. Cells 93(5), 539 (2009).
11.Macabebe, E.Q.B., Sheppard, C.J., Alberts, V., and van Dyk, E.E.: Effects of different selenization conditions on the device parameters of CuIn(Se,S)2 solar cells. Thin Solid Films 517(7), 2380 (2009).
12.Chung, C-H., Lei, B., Bob, B., Li, S-H., Hou, W.W., Duan, H-S., and Yang, Y.: Mechanism of sulfur incorporation into solution processed CuIn(Se,S)2 films. Chem. Mater. 23(22), 4941 (2011).
13.Chiang, M-Y., Chang, S-H., Chen, C-Y., Yuan, F-W., and Tuan, H-Y.: Quaternary CuIn(S1-xSex)2 nanocrystals: Facile heating-up synthesis, band gap tuning, and gram-scale production. J. Phys. Chem. C 115(5), 1592 (2011).
14.Sheppard, C.J. and Alberts, V.: Deposition of single-phase CuIn(Se,S)2 thin films from the sulfurization of selenized CuIn alloys. J. Phys. D: Appl. Phys. 39(17), 3760 (2006).
15.Sheppard, C.J., Alberts, V., and Bekker, W.J.: Deposition of CuIn(Se, S)2 thin films by sulfurization of selenized Cu/In alloys. Phys. Status Solidi A 201(10), 2 (2004).
16.Engelmann, M., McCandless, B.E., and Birkmire, R.W.: Formation and analysis of graded CuIn(Se1-ySy)2 films. Thin Solid Films 387(1–2), 14 (2001).
17.Titus, J., Schock, H.W., Birkmire, R.W., Shafarman, W.N., and Singh, U.P.: Post-deposition sulfur incorporation into CuInSe2 thin films, in II-VI Compound Semiconductor Photovoltaic Materials. Symposium (Mater. Res. Soc. Symp. Proc. 668, 2001). H1.5.1.
18.Nishiwaki, S., Hanket, G., and Shafarman, W.: Control of composition in co-evaporated Cu(InGa)(SeS)2 thin films, in PVSC: 2008 33rd IEEE Photovoltaic Specialists Conference, Vols. 14, 2008, pp. 1538.
19.Walter, T., Menner, R., Ruckh, M., Kaser, L., and Schock, H.W.: Parameter studies and analysis of high efficiency Cu(In,Ga)Se2 based solar cells, in Conference Record of the Twenty Second IEEE Photovoltaic Specialists Conference - 1991, 1991 (Cat. No.91CH2953-8), pp. 924.
20.Sheppard, C.J., Alberts, V., and Botha, J.R.: Structural and optical characterization of single-phase CuIn(Se,S)2 thin films deposited using a two-step process. Phys. Status Solidi C 5(2), 641 (2008).
21.Yan, F., Liu, W., Jiang, G., Li, X., Xie, H., and Zhu, C.: Effects of different sulfurization conditions on the characterization of CuIn(SxSe1-x)2 thin films. J. Mater. Res. 27(8), 1112 (2012).
22.Shirakata, S., Terasako, T., and Kariya, T.: Properties of CuIn(SxSe1-x)2 polycrystalline thin films prepared by chemical spray pyrolysis. J. Phys. Chem. Solids 66(11), 1970 (2005).
23.Chung, C.H., Li, S.H., Lei, B., Yang, W.B., Hou, W.W., Bob, B., and Yang, Y.: Identification of the molecular precursors for hydrazine solution processed CuIn(Se,S)2 films and their interactions. Chem. Mater. 23(4), 964 (2011).
24.Izquierdo, V., Perez-Rodriguez, A., Calvo-Barrio, L., Alvarez-Garcia, J., Morante, J.R., Bermudez, V., Ramdani, O., Kurdi, J., Grand, P.P., Parissi, L., and Kerrec, O.: Raman scattering microcrystalline assessment and device quality control of electrodeposited CuIn(S,Se)2 based solar cells. Thin Solid Films 516(20), 7021 (2008).
25.Saucedo, E., Izquierdo-Roca, V., Ruiz, C.M., Parissi, L., BrousSillou, C., Grand, P.P., Jaime-Ferrer, J.S., Perez-Rodriguez, A., Morante, J.R., and Bermudez, V.: Key role of Cu-Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu-S phases in CuIn(S,Se)2 absorbers. Thin Solid Films 517(7), 2268 (2009).
26.Chavhan, S. and Sharma, R.: Growth, structural and optical properties of non-stoichiometric CuIn(S1-xSex)2 thin films deposited by solution growth technique for photovoltaic application. J. Phys. Chem. Solids 67(4), 767 (2006).
27.Kang, S.H., Kim, J.Y., and Sung, Y.E.: Role of surface state on the electron flow in modified TiO2 film incorporating carbon powder for a dye-sensitized solar cell. Electrochim. Acta 52(16), 5242 (2007).
28.Xiao, J.P., Xie, Y., Xiong, Y.J., Tang, R., and Qian, Y.T.: A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1-x)2 nanocrystallites. J. Mater. Chem. 11(5), 1417 (2001).


A low-cost processing of CuIn(SexS1−x)2 films: Using sulfides nanoparticle precursors

  • Jing Qian (a1), Guilin Chen (a1), Wen Wang (a1) and Guoshun Jiang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed