Skip to main content Accessibility help

Low temperature–controlled synthesis of hierarchical Cu2O/Cu(OH)2/CuO nanostructures for energy applications

  • Priyanka Marathey (a1), Sakshum Khanna (a1), Ranjan Pati (a2), Indrajit Mukhopadhyay (a3) and Abhijit Ray (a3)...


Nano-forms of copper oxides (CuO and Cu2O) are potential candidates in the field of energy conversion and storage. Low temperature and controlled growth of three-dimensional nanostructured hierarchical assembly of CuO over Cu2O is reported here with demonstrated advantage in energy conversion and storage applications. Electrodeposited Cu2O is partially oxidized in an alkali bath to two different forms of hierarchical nanostructures (HNS): CuO/Cu2O and CuO:Cu(OH)2/Cu2O. Randomly oriented nanorods and nanoflakes with high surface area tussock-like nanostructure are formed during oxidation at room and at elevated temperatures, respectively. The nanoflake morphology exhibits a high surface area of 85.82 m2/g and sufficient ion percolation pathways, leading to an efficient electrode–electrolyte interface for electrochemical energy devices. A favorable conduction and valence band alignment in the HNS with respect to water redox level along with fast electron diffusion time of 0.8 μs make it an ideal photocathode.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tajik, S., Dubal, D.P., Gomez-Romero, P., Yadegari, A., Rashidi, A., Nasernejad, B., and Asiri, A.M.: Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategy. Int. J. Hydrogen Energy 42, 12384 (2017).
2.Endut, Z., Hamdi, M., and Basirun, W.: Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528, 213 (2013).
3.Dubal, D.P., Gund, G.S., Holze, R., Jadhav, H.S., Lokhande, C.D., and Park, C-J.: Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459 (2013).
4.Wang, G., Zhang, L., and Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).
5.Vidyadharan, B., Misnon, I.I., Ismail, J., Yusoff, M.M., and Jose, R.: High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. J. Alloys Compd. 633, 22 (2015).
6.Mallick, P. and Sahu, S.: Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol–gel route. Nanosci. Nanotechnol. 2, 71 (2012).
7.Zhu, H., Wang, J., and Xu, G.: Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des. 9, 633 (2008).
8.Zhou, X., Nie, H., Yao, Z., Dong, Y., Yang, Z., and Huang, S.: Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators, B 168, 1 (2012).
9.Zhang, J., Liu, J., Peng, Q., Wang, X., and Li, Y.: Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006).
10.Zhang, X., Wang, G., Zhang, W., Wei, Y., and Fang, B.: Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens. Bioelectron. 24, 3395 (2009).
11.Zhao, X., Jin, Y., Xiang, C., Jin, J., Ding, M., Wu, S., Jia, C., and Sun, L.: Conformal filling of TiO2 nanotubes with dense MxSy films for 3D heterojunctions: The anion effect. ChemElectroChem 6, 1177 (2019).
12.Zhao, X., Huang, J., Wang, Y., Xiang, C., Sun, D., Wu, L., Tang, X., Sun, K., Zang, Z., and Sun, L.: Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange. Electrochim. Acta 199, 180 (2016).
13.Sun, L., Huang, Y., Hossain, M.A., Li, K., Adams, S., and Wang, Q.: Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. J. Electrochem. Soc. 159, D323 (2012).
14.Kuang, M., Li, T.T., Chen, H., Zhang, S.M., Zhang, L.L., and Zhang, Y.X.: Hierarchical Cu2O/CuO/Co3O4 core–shell nanowires: Synthesis and electrochemical properties Nanotechnology 26, 304002 (2015).
15.Xiang, C., Zhao, X., Tan, L., Ye, J., Wu, S., Zhang, S., and Sun, L.: A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy 55, 269 (2019).
16.Ulyankina, A., Leontyev, I., Maslova, O., Allix, M., Rakhmatullin, A., Nevzorova, N., Valeev, R., Yalovega, G., and Smirnova, N.: Copper oxides for energy storage application: Novel pulse alternating current synthesis. Mater. Sci. Semicond. Process. 73, 111 (2018).
17.Harilal, M., Vidyadharan, B., Misnon, I.I., Anilkumar, G.M., Lowe, A., Ismail, J., Yusoff, M.M., and Jose, R.: One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9, 10730 (2017).
18.Shinde, S.K., Dubal, D.P., Ghodake, G.S., and Fulari, V.J.: Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv. 5, 4443 (2015).
19.Navathe, G., Patil, D., Jadhav, P., Awale, D., Teli, A., Bhise, S., Kolekar, S., Karanjkar, M., Kim, J., and Patil, P.: Rapid synthesis of nanostructured copper oxide for electrochemical supercapacitor based on novel [HPMIM][Cl] ionic liquid. J. Electroanal. Chem. 738, 170 (2015).
20.Vidhyadharan, B., Misnon, I.I., Aziz, R.A., Padmasree, K., Yusoff, M.M., and Jose, R.: Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578 (2014).
21.Dubal, D.P., Gund, G.S., Lokhande, C.D., and Holze, R.: CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Mater. Res. Bull. 48, 923 (2013).
22.Hsu, Y-K., Chen, Y-C., and Lin, Y-G.: Characteristics and electrochemical performances of lotus-like CuO/Cu (OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43 (2012).
23.Wijesundera, R.P.: Electrodeposited Cu2O thin films for fabrication of CuO/Cu2O heterojunction. In Solar Cells-Thin-Film Technologies (InTech, Rijeka, Croatia, 2011); pp. 89–110.
24.Zhang, J., Feng, H., Qin, Q., Zhang, G., Cui, Y., Chai, Z., and Zheng, W.: Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J. Mater. Chem. A 4, 6357 (2016).
25.Li, C., Yamahara, H., Lee, Y., Tabata, H., and Delaunay, J-J.: CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 26, 305503 (2015).
26.Fan, G. and Li, F.: Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property. Chem. Eng. J. 167, 388 (2011).
27.Govindaraju, G.V., Wheeler, G.P., Lee, D., and Choi, K-S.: Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater. 29, 355 (2016).
28.Izaki, M., Shinagawa, T., Mizuno, K-T., Ida, Y., Inaba, M., and Tasaka, A.: Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D: Appl. Phys. 40, 3326 (2007).
29.Zhang, W., Wen, X., and Yang, S.: Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films. Inorg. Chem. 42, 5005 (2003).
30.Cho, M., Yoon, K., and Song, B.: Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. J. Appl. Polym. Sci. 83, 1397 (2002).
31.Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., and Yang, S.: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).
32.Dar, M., Ahsanulhaq, Q., Kim, Y., Sohn, J., Kim, W., and Shin, H.: Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Appl. Surf. Sci. 255, 6279 (2009).
33.Zheng, J.Y., Van, T-K., Pawar, A.U., Kim, C.W., and Kang, Y.S.: One-step transformation of Cu to Cu2O in alkaline solution. RSC Adv. 4, 18616 (2014).
34.Cao, A-m., Monnell, J.D., Matranga, C., Wu, J-m., Cao, L-l., and Gao, D.: Hierarchical nanostructured copper oxide and its application in arsenic removal. J. Phys. Chem. C 111, 18624 (2007).
35.Yin, M., Wu, C-K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y., and O’Brien, S.: Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506 (2005).
36.Shaikh, J., Pawar, R., Devan, R., Ma, Y., Salvi, P., Kolekar, S., and Patil, P.: Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta 56, 2127 (2011).
37.Skoog, D., Holler, F.J., and Crouch, S.: Principles of Instrumental Analysis (Thomson Brooks Cole, Canada, 2007).
38.Carriedo, G.A.: The use of cyclic voltammetry in the study of the chemistry of metal-carbonyls: An introductory experiment. J. Chem. Educ. 65, 1020 (1988).
39.Kissinger, P.T. and Heineman, W.R.: Cyclic voltammetry. J. Chem. Educ. 60, 702 (1983).
40.Liu, J., Wang, J., Xu, C., Jiang, H., Li, C., Zhang, L., Lin, J., and Shen, Z.X.: Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018).
41.MacArthur, D.: The proton diffusion coefficient for the nickel hydroxide electrode. J. Electrochem. Soc. 117, 729 (1970).
42.Sharma, V., Singh, I., and Chandra, A.: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018).
43.Orazem, M.E. and Tribollet, B.: Electrochemical Impedance Spectroscopy (John Wiley & Sons, Inc., Hoboken, New Jersey, 2011).
44.Chang, B-Y. and Park, S-M.: Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207 (2010).
45.Macdonald, J.R. and Barsoukov, E.: Impedance Spectroscopy: Theory, Experiment, and Applications History, Vol. 1 (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005); p. 1.
46.Taberna, P., Simon, P., and Fauvarque, J-F.: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, A292 (2003).
47.Patel, M. and Ray, A.: Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis. ACS Appl. Mater. Interfaces 6, 10099 (2014).
48.Morad, M.: An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros. Sci. 42, 1307 (2000).
49.De Jongh, P., Vanmaekelbergh, D., and Kelly, J.: Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999).
50.Marabelli, F., Parravicini, G., and Salghetti-Drioli, F.: Optical gap of CuO. Phys. Rev. B 52, 1433 (1995).
51.Ray, A., Mukhopadhyay, I., Pati, R., Hattori, Y., Prakash, U., Ishii, Y., and Kawasaki, S.: Optimization of photoelectrochemical performance in chemical bath deposited nanostructured CuO. J. Alloys Compd. 695, 3655 (2017).
52.Patel, M., Pati, R., Marathey, P., Kim, J., Mukhopadhyay, I., and Ray, A.: Highly photoactive and photo-stable spray pyrolyzed tenorite CuO thin films for photoelectrochemical energy conversion. J. Electrochem. Soc. 163, H1195 (2016).
53.Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., and Thimsen, E.: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456 (2011).
54.Niveditha, C., Fatima, M.J., and Sindhu, S.: Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. J. Electrochem. Soc. 163, H426 (2016).
55.Zhang, Z. and Wang, P.: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012).
56.Liu, X., Chen, J., Liu, P., Zhang, H., Li, G., An, T., and Zhao, H.: Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Appl. Catal., A 521, 34 (2016).
57.Lim, Y-F., Chua, C.S., Lee, C.J.J., and Chi, D.: Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16, 25928 (2014).
58.Dubal, D.P., Gund, G.S., Holze, R., and Lokhande, C.D.: Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687 (2013).
59.Marathey, P., Pati, R., Mukhopadhyay, I., and Ray, A.: Effect of annealing temperature on the PEC performance of electrodeposited copper oxides. AIP Conf. Proc. 1961, 030045 (2018).


Type Description Title
Supplementary materials

Marathey et al. supplementary material
Figures S1-S6

 Word (6.8 MB)
6.8 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed