Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T20:34:07.513Z Has data issue: false hasContentIssue false

Low temperature synthesis of ultrafine Pb(Zr, Ti)O3 powder by sol-gel combustion

Published online by Cambridge University Press:  31 January 2011

J. Schäfer
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium und Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Heisenbergstrasse 5, 70569 Stuttgart, Germany
W. Sigmund
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium und Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Heisenbergstrasse 5, 70569 Stuttgart, Germany
S. Roy
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium und Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Heisenbergstrasse 5, 70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium und Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Heisenbergstrasse 5, 70569 Stuttgart, Germany
Get access

Abstract

Lead zirconate titanate powders are derived from a novel aqueous-based citrate-nitrate/oxynitrate sol-gel combustion process. Aqueous solutions of metal nitrates or oxynitrates are transformed into gels with citric acid under heating. The received gels undergo a self-propagating combustion reaction on heating to 180 °C and subsequently yield voluminous ashes. These ashes form single phase perovskite Pb(Zr0.53Ti0.47)O3 powder with a specific surface area of 8 m2/g upon calcination at 550 °C. The ashes show a homogeneous distribution of lead, zirconium, and titanium ions which guarantees short diffusion paths in solid state formation of PZT perovskite. The redox behavior of the gels was studied with the help of DTA experiments. Powders are characterized in terms of XRD, SEM, and EDX analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
2.Wersing, W., Rossner, W., Eckstein, G., and Tomandl, G., Silicates Industriels 3-4, 4146 (1985).Google Scholar
3.Shrout, T. R., Papae, P., Kim, S., and Lee, G., J. Am. Ceram. Soc. 73 (7), 18621867 (1990).CrossRefGoogle Scholar
4.Chandratreya, S. S., Fulrath, R. M., and Pask, J. A., J. Am. Ceram. Soc. 64 (7), 422425 (1981).CrossRefGoogle Scholar
5.Kulig, M., Preu, G., Cramer, D., and Lubitz, K., Ceramics: Charting the Future, edited by Vincenzini, P. (Techna, 1995), pp. 24932498.Google Scholar
6.Cheng, H., Ma, J., Zhu, B., and Cui, Y., J. Am. Ceram. Soc. 76 (3), 625629 (1993).CrossRefGoogle Scholar
7.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Soc. Proc. 36, 107 (1985).Google Scholar
8.Yi, G. and Sayer, M., J. Sol-Gel Sci. Technol. 6, 6574 (1996).CrossRefGoogle Scholar
9.Lakeman, C. D. E., Campion, J-F., and Payne, D. A., Ferroelectric Films, 413439 (1992).Google Scholar
10.Zhu, W., Liu, Z. Q., Tse, M. S., Lu, W., and Tan, H. S., Integrated Ferroelectrics 9, 95104 (1995).CrossRefGoogle Scholar
11.Thomson, John, Jr., Ceram. Bull. 53 (5), 421425 (1974).Google Scholar
12.Ari-Gur, P. and Benguigui, L., Solid State Commun. 15, 10771079 (1974).CrossRefGoogle Scholar
13.Hahn, L., Uchino, K., and Nomura, S., Jpn. J. Appl. Phys. 17 (4), 637641 (1978).Google Scholar
14.Mabud, S. A., J. Appl. Cryst. 13, 211216 (1980).CrossRefGoogle Scholar
15.Kakegawa, K., Mohri, J., Shirasaki, S., and Takahashi, K., J. Am. Ceram. Soc. 65 (10), 515519 (1982).CrossRefGoogle Scholar
16.Roy, S., Das Sharma, A., Roy, S. N., and Maiti, H. S., J. Mater. Res. 8, 27612766 (1993).CrossRefGoogle Scholar
17.Roy, S., Sigmund, W., and Aldinger, F., unpublished.Google Scholar