Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T04:23:22.513Z Has data issue: false hasContentIssue false

Low pressure chemical vapor deposition of B-N-C-H films from triethylamine borane complex

Published online by Cambridge University Press:  03 March 2011

R.A. Levy
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
E. Mastromatteo
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
J.M. Grow
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
V. Paturi
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
W.P. Kuo
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102
H.J. Boeglin
Affiliation:
Olin Chemicals Research, Cheshire, Connecticut 06410
R. Shalvoy
Affiliation:
Olin Chemicals Research, Cheshire, Connecticut 06410
Get access

Abstract

In this study, films consisting of B-N-C-H have been synthesized by low pressure chemical vapor deposition using the liquid precursor triethylamine borane complex (TEAB) both with and without ammonia. When no NH3 is present, the growth rate was observed to follow an Arrhenius behavior in the temperature range of 600 to 800 °C with an apparent activation energy of 11 kcal/mol. A linear dependence of growth rate is observed as a function of square root of flow rate for the TEAB range of 20 to 60 sccm, indicating that the reaction rate is controlled by the adsorption of borane. The addition of NH3 to TEAB had the effect of lowering the deposition temperature down to 300 °C and increasing the apparent activation energy to 22 kcal/mol. Above 650 °C, the carbon concentration of the deposits increased significantly, reflecting the breakup of the amine molecule. X-ray diffraction measurements indicated the films to be in all cases amorphous. Infrared spectra of the films showed absorption peaks representing the vibrational modes of B-N, B-N-B, B-H, and N-H. The index of refraction varied between 1.76 and 2.47, depending on composition of the films. Films deposited with no NH3 above 700 °C were seen to be compressive while films below that temperature were tensile. In the range of 350 to 475 °C, the addition of NH3 to TEAB resulted in films that were mildly tensile, while below 325 °C and above 550 °C, the films were found to be compressive. Both the hardness and Young's modulus of the films decreased with higher temperatures, reflecting the influence of the carbon presence.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rand, M. J. and Roberts, J. F., J. Electrochem. Soc. 15, 423 (1968).CrossRefGoogle Scholar
2Hirayama, M. and Shohno, K., J. Electrochem. Soc. 122, 1671 (1975).CrossRefGoogle Scholar
3Baronian, W., Mater. Res. Bull. VII, 119 (1972).CrossRefGoogle Scholar
4Sano, M. and Aoki, M., Thin Solid Films 83, 247 (1981).CrossRefGoogle Scholar
5Motojima, S., Tamura, Y., and Sugiyama, K., Thin Solid Films 88, 269 (1982).CrossRefGoogle Scholar
6Nakamura, K., J. Electrochem. Soc. 132, 1757 (1985).CrossRefGoogle Scholar
7Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 127, 399 (1980).CrossRefGoogle Scholar
8Hyder, S. B. and Yep, T. O., J. Electrochem. Soc. 123, 1721 (1976).CrossRefGoogle Scholar
9Weissmantel, C., Bewilogua, K., Breuer, K., Dietrich, D., Ebersbach, U., Erler, H. J., Rau, B., and Reisse, G., Thin Solid Films 96, 31 (1982).CrossRefGoogle Scholar
10Weissmantel, C., J. Vac. Sci. Technol. 18, 179 (1981). Shanfield, U. S. and Wolfson, R., J. Vac. Sci. Technol. A 1, 323 (1983).CrossRefGoogle Scholar
12Kishimoto, A., Sakakihara, M., Kawai, T., Oizumi, H., Kuniyoshi, S., Yamaguchi, S., and Mochiji, K., Jpn. J. Appl. Phys. 31, L717 (1992).CrossRefGoogle Scholar
13Montasser, K., Hattori, S., and Morita, S., J. Appl. Phys. 58, 3185 (1985).CrossRefGoogle Scholar
14Maydan, D., Coquin, G. A., Levinstein, H. J., Sinha, A. K., and Wang, D. N. K., J. Vac. Sci. Technol. 16, 1959 (1979).CrossRefGoogle Scholar
15Acosta, R. E., Maldonado, J. R., and Fair, R., J. Vac. Sci. Technol. B 4, 240 (1986).CrossRefGoogle Scholar
16Levy, R. A., Resnick, D. J., Frye, R. C., Yanof, A. W., Wells, G. M., and Cerrina, F., J. Vac. Sci. Technol. B 6, 154 (1988).CrossRefGoogle Scholar
17Johnson, W. A., Levy, R. A., Resnick, D. J., Saunders, T. E., Yanof, A. W., Huber, H., and Oertel, H., J. Vac. Sci. Technol. B 5, 257 (1987).CrossRefGoogle Scholar
18Neureither, B., Basa, C., Sandwick, T., and Blumenstock, K., J. Electrochem. Soc. 140, 3607 (1993).CrossRefGoogle Scholar
19Yamaguchi, E. and Minakata, M., J. Appl. Phys. 55, 3098 (1984).CrossRefGoogle Scholar
20Gafri, O., Grill, A., and Itzhak, D., Thin Solid Films 72, 523 (1980).CrossRefGoogle Scholar
21Wiggins, M. D., Aita, C. R., and Hickernell, F. S., J. Vac. Sci. Technol. A 2, 322 (1984).CrossRefGoogle Scholar
22Murarka, S. P., Chang, C. C., Wang, D. N. K., and Smith, T. E., J. Electrochem. Soc. 126, 1951 (1979).CrossRefGoogle Scholar
23Takahashi, T., Itoh, H., and Kuroda, M., J. Cryst. Growth 53, 418 (1981).CrossRefGoogle Scholar
24Szmidt, J., Jakubowski, A., Michalski, A., and Rusek, A., Thin Solid Films 110, 7 (1983).CrossRefGoogle Scholar
25Adams, A. C., J. Electrochem. Soc. 128, 1378 (1981).CrossRefGoogle Scholar
26Nakamura, K., J. Electrochem. Soc. 133, 1120 (1986).CrossRefGoogle Scholar
27Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
28Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
29Grow, J. M., Levy, R. A., Shi, Y. T., and Pfeffer, R. L., J. Electrochem. Soc. 140, 851 (1993).CrossRefGoogle Scholar
30Grow, J. M., Levy, R. A., Bhaskaran, M., Boeglin, H. J., and Shalvoy, R., J. Electrochem. Soc. 140, 3001 (1993).CrossRefGoogle Scholar
31Grow, J. M. and Levy, R. A., J. Mater. Res. 9, 2072 (1994).CrossRefGoogle Scholar