Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T04:06:33.592Z Has data issue: false hasContentIssue false

Losses in ac of BSCCO-2223 superconducting monofilament and multifilament tapes at power frequencies

Published online by Cambridge University Press:  31 January 2011

S. Mench
Affiliation:
Department of Materials Science, University of Pittsburgh, Pennsylvania 15261
M. Lelovic
Affiliation:
Department of Materials Science, University of Pittsburgh, Pennsylvania 15261
T. Deis
Affiliation:
Department of Materials Science, University of Pittsburgh, Pennsylvania 15261
N. G. Eror
Affiliation:
Department of Materials Science, University of Pittsburgh, Pennsylvania 15261
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
P. Haldar
Affiliation:
Intermagnetics General Corporation, Latham, New York 12100
Get access

Abstract

The ac magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Oy (BSCCO-2223) tapes with similar Ic values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular, and eddy current losses. Because of BSCCO's anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by over an order of magnitude than those applied perpendicular.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wilson, M. N., Superconducting Magnets (Clarendon Press, Oxford, 1983), p. 182.Google Scholar
2.Clem, J., Magnetic Susceptibility of Superconductors and Other Spin Systems (Plenum Press, New York, 1991); J. R. Clem, Physica C 153–155, 50–55 (1988).Google Scholar
3.Muller, K. H., Physica C 159, 717726 (1989); K. H. Muller, M. Nikolo, and R. Driver, Phys. Rev. B 43 (10), 7976–7979 (1991).CrossRefGoogle Scholar
4.Bean, C. P., Rev. Mod. Phys. 36, 3139 (1964).CrossRefGoogle Scholar
5.Carr, W. J. Jr, AC Loss and Macroscopic Theory of Superconductors (Gordon and Breach, New York, 1983), pp. 3988.Google Scholar
6.Oota, A., Fukunaga, T., Abe, T., Yuhya, S., and Hiraoka, M., Appl. Phys. Lett. 66 (12), 15511553 (1995).CrossRefGoogle Scholar
7.Orehotsky, J., Reilly, K. M., Suenaga, M., Hikata, T., Ueyama, M., and Sato, K., Appl. Phys. Lett. 60 (2), 252254 (1992); Y. Fukumoto, H. J. Weisman, M. Suenaga, and P. Haldar, Phys. C 269, 349–353 (1996).CrossRefGoogle Scholar
8.Ciszek, M., Ashworth, S. P., Glowacki, B. A., Campbell, A. M., and Haldar, P., Phys. C 272, 319325 (1996); M. Ciszek, S. P. Ashworth, M. P. James, B. A. Glowacki, A. M. Campbell, R. Garre, and S. Conti, Supercond. Sci. Technol. 9, 379–384 (1996).CrossRefGoogle Scholar
9.Balachandran, U., Iyer, A. N., Haldar, P., and Motowidlo, L., JOM 45 (9), 5457 (1993).CrossRefGoogle Scholar
10.Lelovic, M., Deis, T., Eror, N. G., Balachandran, U., and Haldar, P., Supercond. Sci. Technol. 9, 965970 (1996).CrossRefGoogle Scholar
11.Silva, C. and McHenry, M. E., “The Influence of Granularity on Dissipation in High Temperature Superconductor,” IEEE Trans. Appl. Supercond. 7 (2), 15961599 (1997).CrossRefGoogle Scholar
12.Yang, Y., Hughes, T., Spiller, D. M., Beduz, C., Penny, M., Scurlock, R. G., Haldar, P., and Sokolowski, R. S., Supercond. Sci. Technol. 9, 801804 (1996).CrossRefGoogle Scholar