Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T01:54:49.706Z Has data issue: false hasContentIssue false

Localized epitaxy of diamond on (100) silicon

Published online by Cambridge University Press:  03 March 2011

P. John
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
D.K. Milne
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
P.G. Roberts
Affiliation:
Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
M.G. Jubber
Affiliation:
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
M. Liehr
Affiliation:
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
J.I.B. Wilson
Affiliation:
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
Get access

Abstract

Diamond films exhibiting contiguous epitaxial crystallites (∼3-4 μm) have been grown on single crystal (100) silicon by 2.45 GHz microwave plasma deposition. The diamond films were deposited by a three-step process. In the initial stage the silicon wafer was pretreated for 3 h in a 1.8% methane in hydrogen plasma at low pressure. The subsequent nucleation stage was performed, under identical processing conditions, except that a dc bias of −340 V was applied for 25 min. During this period the current increased from 38 mA at the start to 102 mA at the end of the bias. The final growth stage was performed, with an earthed substrate, utilizing a carbon monoxide/methane/hydrogen gas mixture whose composition is conducive to uniformly faceted (100) diamond growth. Scanning electron micrographs showed that a large fraction of the (100) faces of the diamond crystallites are aligned with the (100) plane of the underlying silicon lattice with the crystallite edges parallel to the (110) direction. Raman scattering was used to confirm this finding by measuring the angular dependence of the Raman backscattering intensity at 1332 cm−1 using plane polarized excitation of individual crystallites within the diamond films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stoner, B. R., Sahaida, S. R., Malta, D. M., Sowers, A., and Nemanich, R. J., Proc. 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, Tokyo, Japan (1993), p. 825.Google Scholar
2Jiang, X., Six, R., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H-J., Diamond and Related Materials 2, 407 (1993).CrossRefGoogle Scholar
3Jiang, X. and Klages, C-P., Diamond and Related Materials 2, 1112 (1993).CrossRefGoogle Scholar
4Jiang, X., Klages, C-P., Rosier, M., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. A57, 483 (1993).CrossRefGoogle Scholar
5Jiang, X., Klages, C-P., Rosier, M., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
6Jiang, X., Schiffmann, K., Westphal, A., and Klages, C-P., Appl. Phys. Lett. 63, 1203 (1993).CrossRefGoogle Scholar
7Stoner, B. R., Williams, B. E., Wolter, S. D., Nishimura, K., and Glass, J. T., J. Mater. Res. 7, 257 (1992).CrossRefGoogle Scholar
8Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
9Zhu, W., Wang, X. H., Stoner, B. R., Ma, G-H. M., Kong, H. S., Braun, M. W.H., and Glass, J. T., Phys. Rev. B 47, 6529 (1993).CrossRefGoogle Scholar
10Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
11Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
12Stoner, B. R., Ma, G-H. M., Wolter, S. D., Zhu, W., Wang, Y-C., Davis, R. F., and Glass, J. T., Diamond and Related Materials 2, 142 (1993).CrossRefGoogle Scholar
13Kohl, R., Wild, C., Herres, N., Koidl, P., Stoner, B. R., and Glass, J. T., Appl. Phys. Lett. 63, 1792 (1993).CrossRefGoogle Scholar
14John, P., Milne, D. K., Drummond, I. C., Jubber, M. G., Wilson, J. I.B., and Savage, J. A., Diamond and Related Materials 3, 486 (1994).CrossRefGoogle Scholar
15Jubber, M. G., Wilson, J. I. B., Drummond, I. C., John, P., and Milne, D. K., Vacuum 45, 499 (1994).CrossRefGoogle Scholar
16Jubber, M. G., Wilson, J. I. B., Drummond, I. C., John, P., and Milne, D. K., Diamond and Related Materials 2, 402 (1993).CrossRefGoogle Scholar
17John, P., Milne, D. K., Vijayarajah, W. C., Jubber, M. G., and Wilson, J. I. B., Diamond and Related Materials 3, 388 (1994).CrossRefGoogle Scholar