Skip to main content Accessibility help
×
Home

L12-strengthened high-entropy alloys for advanced structural applications

  • Tao Yang (a1), Yilu Zhao (a1), Weihong Liu (a1), Jijung Kai (a1) and Chaintsuan Liu (a1)...

Abstract

Advanced alloys with both high strength and ductility are highly desirable for a wide range of engineering applications. Conventional alloy design strategies based on the single-principle element are approaching their limits in further optimization of their performances. Precipitation-hardened high-entropy alloys (HEAs), especially those strengthened by coherent L12-nanoparticles, have received considerable interest in recent years, enabling a new space for the development of advanced structural materials with superior mechanical properties. In this review, we highlight recent important advances of the newly developed L12-strengthened HEAs, including the aspects of computation-aided alloy design, unique properties, atomic-level characterization, phase evolution, and stability. In particular, we focus our attention on elucidating fundamental scientific issues involving the alloying effects, precipitation behaviors, mechanical performances, and the corresponding deformation mechanisms, all of which provide a comprehensive metallurgical understanding and guidance for the design of this new class of HEAs. Finally, future research directions and prospects are also critically assessed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: chainliu@cityu.edu.hk

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Ritchie, R.O.: The conflicts between strength and toughness. Nat. Mater. 10, 817 (2011).
2.Jiao, Z.B., Luan, J.H., Miller, M.K., Yu, C.Y., and Liu, C.T.: Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater. 84, 283 (2015).
3.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
4.Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).
5.Kozak, R., Sologubenko, A., and Steurer, W.: Single-phase high-entropy alloys—An overview. Z. Kristallogr.–Cryst. Mater. 230, 5568 (2015).
6.Lu, Z.P., Wang, H., Chen, M.W., Baker, I., Yeh, J.W., Liu, C.T., and Nieh, T.G.: An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66, 67 (2015).
7.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
8.Takeuchi, A., Chen, N., Wada, T., Zhang, W., Yokoyama, Y., Inoue, A., and Yeh, J.W.: Alloy design for high-entropy bulk glassy alloys. Procedia Eng. 36, 226 (2012).
9.Yao, C., Wei, B., Zhang, P., Lu, X., Liu, P., and Tong, Y.: Facile preparation and magnetic study of amorphous Tm–Fe–Co–Ni–Mn multicomponent alloy nanofilm. J. Rare Earths 29, 133 (2011).
10.Yeh, J-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).
11.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
12.Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 17 (2017).
13.Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50, 32 (2015).
14.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
15.Singh, A.K. and Subramaniam, A.: On the formation of disordered solid solutions in multi-component alloys. J. Alloys Compd. 587, 113 (2014).
16.Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Empirical design of single phase high-entropy alloys with high hardness. Intermetallics 58, 1 (2015).
17.Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).
18.Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).
19.Liu, W.H., Yang, T., and Liu, C.T.: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 211 (2017).
20.Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).
21.Jiao, Z.B., Luan, J.H., Miller, M.K., Chung, Y.W., and Liu, C.T.: Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Mater. Today 20, 142154 (2016).
22.Jiao, Z.B., Luan, J.H., Zhang, Z.W., Miller, M.K., and Liu, C.T.: High-strength steels hardened mainly by nanoscale NiAl precipitates. Scr. Mater. 87, 45 (2014).
23.Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).
24.Shun, T-T., Chang, L-Y., and Shiu, M-H.: Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater. Charact. 81, 92 (2013).
25.Shun, T-T., Hung, C-H., and Lee, C-F.: The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C. J. Alloys Compd. 495, 55 (2010).
26.He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).
27.Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr. Mater. 137, 88 (2017).
28.Zhao, Y.L., Yang, T., Tong, Y., Wang, J., Luan, J.H., Jiao, Z.B., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72 (2017).
29.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).
30.He, J.Y., Wang, H., Wu, Y., Liu, X.J., Mao, H.H., Nieh, T.G., and Lu, Z.P.: Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79, 41 (2016).
31.Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).
32.Antonov, S., Detrois, M., and Tin, S.: Design of novel precipitate-strengthened Al–Co–Cr–Fe–Nb–Ni high-entropy superalloys. Metall. Mater. Trans. A 49, 305 (2017).
33.Chang, Y-J. and Yeh, A-C.: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy. Mater. Chem. Phys. 210, 111119 (2017).
34.Daoud, H.M., Manzoni, A.M., Wanderka, N., and Glatzel, U.: High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 67, 2271 (2015).
35.Gwalani, B., Choudhuri, D., Soni, V., Ren, Y., Styles, M., Hwang, J.Y., Nam, S.J., Ryu, H., Hong, S.H., and Banerjee, R.: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Mater. 129, 170 (2017).
36.Manzoni, A., Singh, S., Daoud, H., Popp, R., Völkl, R., Glatzel, U., and Wanderka, N.: On the path to optimizing the Al–Co–Cr–Cu–Fe–Ni–Ti high entropy alloy family for high temperature applications. Entropy 18, 104 (2016).
37.Tsai, M-H., Yuan, H., Cheng, G., Xu, W., Tsai, K-Y., Tsai, C-W., Jian, W.W., Juan, C-C., Shen, W-J., Chuang, M-H., Yeh, J-W., and Zhu, Y.T.: Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32, 329 (2013).
38.Tsao, T.K., Yeh, A.C., Kuo, C.M., Kakehi, K., Murakami, H., Yeh, J.W., and Jian, S.R.: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 12658 (2017).
39.Wang, Z.G., Zhou, W., Fu, L.M., Wang, J.F., Luo, R.C., Han, X.C., Chen, B., and Wang, X.D.: Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater. Sci. Eng., A 696, 503 (2017).
40.Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).
41.Zhao, Y.Y., Chen, H.W., Lu, Z.P., and Nieh, T.G.: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 147, 184 (2018).
42.Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).
43.Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics 59, 75 (2015).
44.Wang, Z., Qiu, W., Yang, Y., and Liu, C.T.: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).
45.Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
46.Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).
47.Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
48.Jiao, Z.B., Luan, J.H., Miller, M.K., and Liu, C.T.: Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater. 97, 58 (2015).
49.Luan, J.H., Jiao, Z.B., Chen, G., and Liu, C.T.: Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys. J. Alloys Compd. 624, 170 (2015).
50.Suzuki, A., Inui, H., and Pollock, T.M.: L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45, 345 (2015).
51.He, F., Wang, Z., Zhu, M., Li, J., Dang, Y., and Wang, J.: The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Mater. Des. 85, 1 (2015).
52.Chang, Y-J. and Yeh, A-C.: The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd. 653, 379 (2015).
53.Pickering, E.J., Stone, H.J., and Jones, N.G.: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645, 65 (2015).
54.Yu, C.Y., Xu, X.D., Chen, M.W., and Liu, C.T.: Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. J. Alloys Compd. 663, 340 (2016).
55.Seidman, D.N.: Three-dimensional atom-probe tomography: Advances and applications. Annu. Rev. Mater. Res. 37, 127 (2007).
56.Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012).
57.Yang, T., Zhao, Y.L., and Liu, C.T.: Unpublished work.
58.Han, B., Wei, J., Tong, Y., Chen, D., Zhao, Y., Wang, J., He, F., Yang, T., Zhao, C., and Shimizu, Y.: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr. Mater. 148, 42 (2018).
59.Reed, R.C. and Rae, C.M.F.: Physical Metallurgy of the Nickel-Based Superalloys (Elsevier, Amsterdam, the Netherlands, 2014); p. 2215.
60.Reed, R.C.: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, United Kingdom, 2008).
61.He, J.Y., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Mater. Sci. Eng., A 686, 34 (2017).
62.Kuo, C-M. and Tsai, C-W.: Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy. Mater. Chem. Phys. 210, 103110 (2017).
63.Mughrabi, H.: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21 (2014).
64.Tsao, T.K., Chang, Y.J., Chang, K.C., Yeh, J.W., Chiou, M.S., Jian, S.R., Kuo, C.M., Wang, W.R., and Murakami, H.: Developing new type of high temperature alloys—High entropy superalloys. Int. J. Metall. Mater. Sci. Eng. 1, 14 (2015).
65.Tsao, T-K., Yeh, A-C., Kuo, C-M., and Murakami, H.: High temperature oxidation and corrosion properties of high entropy superalloys. Entropy 18, 62 (2016).
66.Daoud, H.M., Manzoni, A.M., Völkl, R., Wanderka, N., and Glatzel, U.: Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air. Adv. Eng. Mater. 17, 1134 (2015).
67.Gwalani, B., Soni, V., Lee, M., Mantri, S.A., Ren, Y., and Banerjee, R.: Optimizing the coupled effects of Hall–Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 121, 254 (2017).
68.Daoud, H., Manzoni, A., Völkl, R., Wanderka, N., and Glatzel, U.: Microstructure and tensile behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloy. JOM 65, 1805 (2013).
69.Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 648, 15 (2015).
70.Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C., Yannetta, C., Chen, X., Ramanujan, R.V., Styles, M., Gibson, M., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).
71.Tsao, T-K., Yeh, A-C., and Murakami, H.: The microstructure stability of precipitation strengthened medium to high entropy superalloys. Metall. Mater. Trans. A 48, 2435 (2017).
72.Jiang, S., Wang, H., Wu, Y., Liu, X., Chen, H., Yao, M., Gault, B., Ponge, D., Raabe, D., Hirata, A., Chen, M., Wang, Y., and Lu, Z.: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460 (2017).
73.Zhao, Y.L., Yang, T., Zhu, J.H., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 148, 51 (2018).
74.Stoloff, N.: Physical and mechanical metallurgy of Ni3Al and its alloys. Int. Mater. Rev. 34, 153 (1989).
75.Raynor, D. and Silcock, J.: Strengthening mechanisms in γ′ precipitating alloys. Met. Sci. J. 4, 121 (1970).
76.Gladman, T.: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999).

Keywords

Related content

Powered by UNSILO

L12-strengthened high-entropy alloys for advanced structural applications

  • Tao Yang (a1), Yilu Zhao (a1), Weihong Liu (a1), Jijung Kai (a1) and Chaintsuan Liu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.