Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T07:16:50.387Z Has data issue: false hasContentIssue false

Knoop hardness anisotropy on {001} faces of germanium and gallium arsenide

Published online by Cambridge University Press:  03 March 2011

S. G. Roberts
Affiliation:
Department of Metallurgy and Science of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH, England
P. D. Warren
Affiliation:
Department of Metallurgy and Science of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH, England
P. B. Hirsch
Affiliation:
Department of Metallurgy and Science of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH, England
Get access

Abstract

Knoop hardness measurements have been carried out as a function of azimuthal angle and temperature (in the range 20°–440°C) on {001} faces of n-type, p-type, and intrinsic Ge and GaAs. The degree of hardness anisotropy shown increases with increasing temperature and for Ge is undetectable below a certain temperature which depends on doping. In GaAs, asymmetry in hardness between [110] and [110] directions was found at high temperatures. A new model of hardness anisotropy has been developed, based on detailed modeling of the plastic zone. This relates the hardness to the degree of workhardening in different regions of the plastic zone. Using this model, detailed explanations are given of the hardness anisotropy behavior and of the plastic recovery around indentations.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brookes, C. A., O'Neill, J. B., and Redfern, B. A. W., Proc. R. Soc. London, Ser. A 322, 73 (1971).Google Scholar
2Daniels, F. W. and Dunn, C. G., Trans. Am. Soc. Metals 41, 419 (1949).Google Scholar
3Feng, C. and Elbaum, C., Trans. AIME 212, 47 (1958).Google Scholar
4Garfinkle, M. and Garlick, R. G., Trans. AIME 242, 809 (1968).Google Scholar
5Sawyer, G. A., Sargent, P. M., and Page, T. F., J. Mater. Sci. 15, 1001 (1978).CrossRefGoogle Scholar
6Hanninck, R. H. J., Kohlstedt, D. L., and Murray, M. J., Proc. R. Soc. London, Ser. A 326, 409 (1972).Google Scholar
7Rowcliffe, D. J. and Hollox, G. E., J. Mater. Sci. 6, 1270 (1971).CrossRefGoogle Scholar
8Hirsch, P. B., Pirouz, P., Roberts, S. G., and Warren, P. D., Philos. Mag. 52 B, 761 (1985).Google Scholar
9Patel, J. R. and Chaudhuri, A. R., Phys. Rev. 143, 601 (1966).CrossRefGoogle Scholar
10Choi, S. K., Mihara, M., and Ninomiya, T., Jpn. J. Appl. Phys. 16, 737 (1977).CrossRefGoogle Scholar
11Roberts, S. G., Pirouz, P., and Hirsch, P. B., J. Phys. (Paris) 44, C4–75(1983).CrossRefGoogle Scholar
12Roberts, S. G., Pirouz, P., and Hirsch, P. B., J. Mater. Sci. 20, 1739 (1985).CrossRefGoogle Scholar
13Warren, P. D., Pirouz, P., and Roberts, S. G., Philos. Mag. 50 A, L23 (1984).Google Scholar
14Patel, J. R. and Freeland, P. E., Phys. Rev. Lett. 18, 833 (1977).CrossRefGoogle Scholar
15George, A. and Champier, G., Phys. Stat. Sol. 53a, 52 (1979).Google Scholar
16Pirouz, P. and Freeland, P. E. (unpublished work).Google Scholar
17Haasen, P., Acta Metall. 5, 598 (1957).CrossRefGoogle Scholar
18Introduction to the Proceedings of the Conference on Dislocations in Tetrahedrally Coordinated Semiconductors, Hünfeld/Fulda, F. R. G., September 1978, J. Phys. (Paris) 40, Colloque C6 (1979).CrossRefGoogle Scholar
19Ninomiya, T., J. Phys. (Paris) 40, C6-143 (1979).CrossRefGoogle Scholar
20Rabier, J., Veysierre, P., and Demenet, J. L., J. Phys. (Paris) 44, C4-243(1983).CrossRefGoogle Scholar
21Hagan, J. T., J. Mater. Sci. 15, 1417 (1980)CrossRefGoogle Scholar
22Nadai, A., Plasticity (McGraw-Hill, New York, 1931), p. 247.Google Scholar
23Kent, J., M. Sc. thesis, University of Bristol, 1975.Google Scholar
24Marsh, D. M., Proc. R. Soc. London, Ser. A 279, 420 (1964).Google Scholar
25Yoffe, E. H., Philos. Mag. 46 A, 617 (1982).CrossRefGoogle Scholar
26Roberts, S. G. and Pirouz, P., in Microstructural Science, edited by Shiels, S. A., Bagnall, C., Wirkowski, R. E., and Vander Voort, G. F. (American Society for Metals, Cleveland, OH, 1986), Vol. 13, p. 27.Google Scholar
27Watts, D. Y. and Willoughby, A. F. W., J. Appl. Phys. 56, 1869 (1984).CrossRefGoogle Scholar
28Brookes, C. A., Morris, E. L., and Moxley, B., Proceedings of the Conference on Computational Techniques as an Aid in Physical Metallurgy, Leeds, U.K., 1971 (Iron and Steel Inst., London, 1971), p. 29.Google Scholar
29Kyser, D. F. and Millea, M. F., J. Electrochem. Soc. 111, 1102 (1964).CrossRefGoogle Scholar
30Brookes, C. A., in Properties of Diamond, edited by Field, J. E. (Academic, London, 1979), p. 383.Google Scholar