Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T15:00:41.601Z Has data issue: false hasContentIssue false

Interfacial energy states of moisture-exposed cracks in mica

Published online by Cambridge University Press:  31 January 2011

Kai-Tak Wan
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Nicholas Aimard
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
S. Lathabai
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Roger G. Horn
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Brian R. Lawn
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Results of crack growth observations on mica in water-containing environments are described. The study focuses on equilibrium crack states for reversed loading cycles, i.e., for initial propagation through virgin solid and subsequent retraction-repropagation through healed or misoriented-healed interfaces. Departures from these equilibrium states are manifest as steady-state forward or backward crack velocities at specific applied loads. The equilibria are thereby interpreted as quiescent, threshold configurations G = WE, with G the Griffith mechanical-energy-release rate and WE the Dupré work of adhesion, on crack velocity (v-G) diagrams. Generally, WE is found to decrease with concentration of water, in accordance with a Gibbs formalism. Hysteresis is observed in the forward-backward-forward crack propagation cycle, signifying a reduction in the adhesion energy on exposure of the open interface to environmental species prior to healing. This hysteresis is especially marked for those interfaces that are misoriented before healing, indicating that the structure of the underlying solid substrate as well as of the intervening fluid is an important consideration in the interface energetics. The equilibrium states for different environments can be represented on a simple energy-level diagram, as differences between thermodynamic end-point states: initial, closed-interface states refer to crystallographic bonding configurations ahead of the crack-tip adhesion zone; final, open interface states refer to configurations behind the crack-tip zone. The significance of this diagram in relation to the fundamental atomic structure of interfaces in fracture and other adhesion geometries, including implications concerning kinetics, is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lawn, B. R., Appl. Phys. Lett. 47,809 (1985).CrossRefGoogle Scholar
2 Clarke, D. R., Lawn, B. R., and Roach, D. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C. Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1986), Vol. 8, p. 341.CrossRefGoogle Scholar
3 Roach, D. H., Heuckeroth, D. M., and Lawn, B. R., Colloid, J. and Interface Sci. 114, 292 (1986).CrossRefGoogle Scholar
4 Lawn, B. R., Roach, D. H., and Thomson, R. M., Mater, J.. Sci. 22, 4036 (1987).Google Scholar
5 Lawn, B. R. and Lathabai, S., Mater. Forum 11, 313 (1988).Google Scholar
6 Maugis, D., Mater, J.. Sci. 20, 3041 (1985).Google Scholar
7 Lawn, B.R. and Wilshaw, T.R., Fracture of Brittle Solids (Cambridge University Press, London, 1975).Google Scholar
8 Israelachvili, J. N., Intermolecular and Surface Forces (Academic Press, London, 1985).Google Scholar
9 Horn, R. G. and Israelachvili, J. N., Chem, J.. Phys. 75,1400 (1981).Google Scholar
I0 Chan, D.Y. C.and Horn, R. G., J. Chem. Phys. 83, 5311 (1985).CrossRefGoogle Scholar
11 Obreimoff, J.W., Proc. Roy. Soc. Lond. A127, 290 (1930).Google Scholar
12 Derjaguin, B.V., Krotova, N.A., and Karasev, V.V., Sov. Phys.- Dokl. 1, 466 (1956).Google Scholar
13 Derjaguin, B.V. and Metsik, M. S., Sov. Phys.-Solid State 1, 1393 (1960).Google Scholar
14 Bailey, A.I., J.Appl. Phys. 32, 1407 (1961).CrossRefGoogle Scholar
15 Bryant, P. J., in Transactions of Ninth National Vacuum Symposium (Macmillan, New York, 1962), p. 311.Google Scholar
16 Bryant, P. J., Taylor, L. H., and Gutshall, P. L., in Transactions of Tenth National Vacuum Symposium(Macmillan, New York, 1963), p. 21.Google Scholar
17 Bailey, A. I. and Kay, S. M., Proc. Roy. Soc. Lond. A301, 47 (1967).Google Scholar
18 Bailey, A. I. and Price, A. G., J.Chem. Phys. 53, 3421 (1970).CrossRefGoogle Scholar
19 Leonesio, R. B., J.Am. Ceram. Soc. 55, 437 (1972).CrossRefGoogle Scholar
20 Metsik, M.S., J.Adhesion 3, 307 (1972).CrossRefGoogle Scholar
21 Bailey, A. I.and Daniels, H., J. Phys. Chem. 77, 501 (1973).CrossRefGoogle Scholar
22 Trott, G., Gutshall, P. L., and Phillips, J. M., in Proceedings of Seventh International Vacuum Congress and Third International Conference on Solid Surfaces, Vienna, 1051 (1977).Google Scholar
23 Bragg, W. L. and Claringbull, G.F., Crystal Structures of Minerals (Bell, London, 1965), Vol. IV.Google Scholar
24 Wan, K-T., Lathabai, S., and Lawn, B. R. (to be published).Google Scholar
25 Roach, D. H., Lathabai, S., and Lawn, B. R., J. Am. Ceram. Soc. 71, 97 (1988).CrossRefGoogle Scholar
26 Adamson, A.W., Physical Chemistry of Surfaces (John Wiley, New York, 1982).Google Scholar
27 Orowan, E., Nature 154, 341 (1944).CrossRefGoogle Scholar
28 Pashley, R. M. and Israelachvili, J. N., J. Colloid Interface Sci. 101, 511 (1984).CrossRefGoogle Scholar
29 Hockey, B. J., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1983), Vol. 5, p. 637.Google Scholar
30 Gaines, G. L. and Tabor, D., Nature 178, 1304 (1956).CrossRefGoogle Scholar
31 Clarke, D.R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
32 Thomson, R. M., Acta Metall. (to be published).Google Scholar
33 Wolf, D. and Benedek, R., in Grain Boundary Phenomena in Electronic Ceramics: Advances in Ceramics, Vol. 1, edited by Levinson, L. M. (The American Ceramic Society, Columbus, OH, 1981), p. 107.Google Scholar
34 Pashley, R.M., J.Colloid Interface Sci. 83, 531 (1981).CrossRefGoogle Scholar
35 Horn, R. G., Israelachvili, J. N., and Pribac, F., J. Colloid Interface Sci. 115, 480 (1987).CrossRefGoogle Scholar
36 McGuiggan, P. M. and J. N. Israelachvili, Chem. Phys. Lett. 149, 469 (1988).CrossRefGoogle Scholar
37 Wiederhorn, S. M., J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
38 Wiederhorn, S. M., in Fracture of Ceramics, edited by Wachtman, J. B., National Bureau of Standards Special Technical Publication 303, 217 (1969).Google Scholar
39 Cheeseman, G. L. and Lawn, B. R., Phys. Status Solidi (A) 3, 951 (1970).CrossRefGoogle Scholar
40 Stavrinidis, B. and Holloway, D.G., Phys. Chem. Glasses 24, 19 (1983).Google Scholar
41 Fuller, E. R. and Michalske, T. M., J. Am. Ceram. Soc. 68, 586 (1965).Google Scholar
42 Wan, K-T.and Lawn, B. R. (to be published).Google Scholar
43 Lawn, B. R., Mater. Sci. Eng. 13, 277 (1974).CrossRefGoogle Scholar