Skip to main content Accessibility help
×
Home

Interactive formation of Cu-rich precipitate, reverted austenite, and alloyed carbide during partial austenite reversion treatment for high-strength low-alloy steel

  • Qingdong Liu (a1), Chuanwei Li (a2) and Jianfeng Gu (a1)

Abstract

We address the competitive precipitation and coprecipitation of three types of secondary phases, i.e., Cu-rich precipitates (CRPs), reverted austenite (RA), and alloyed carbide, in a high-strength low-alloy steel with austenite reversion treatment at 675 °C by using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. There is a strong competitive diffusion of Ni and Cu participating in austenite reversion and Cu precipitation with the fact that no CRPs are detected in and around the RA. Meanwhile, there is also a strong competitive diffusion of austenite stabilizing element Ni and carbide-forming elements Cr and Mo into the pre-existing C-rich zone, leading to the formation of nonequilibrium alloyed carbide deviating from the stoichiometric composition. On the other hand, the alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favorable. The knowledge on the interactive formation of these three features provides versatile access to tailor the distributional morphology of CRPs, RA, and alloyed carbide via a multistage heat treatment and thus realize their beneficial effect on strength and toughness.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: gujf@sjtu.edu.cn

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Czyryca, E.J., Link, R.E., Wong, R.J., Aylor, D.A., Montem, T.W., and Gudas, J.P.: Development and certification of HSLA-100 steel for naval ship construction. Nav. Eng. J. 102, 6382 (1990).
2. Paules, J.R.: Developments in HSLA steel products. JOM 43, 4144 (1991).
3. Wilson, A.D., Hamburg, E.G., Colvin, D.J., Thompson, S.W., and Krauss, G.: Microalloyed HSLA Steels (World Materials Congress, Chicago, 1988); pp. 259275.
4. Miglin, M.T., Hirth, J.P., Rosenfield, A.R., and Clark, W.A.T.: Microstructure of a quenched and tempered Cu-bearing high-strength low-alloy steel. Metall. Trans. A 17, 791798 (1986).
5. Ritchie, R.O.: The conflicts between strength and toughness. Nat. Mater. 10, 817822 (2011).
6. Fine, M.E., Vaynman, S., Isheim, D., Chung, Y-W., Bhat, S.P., and Hahin, C.H.: A new paradigm for designing high-fracture-energy steels. Metall. Mater. Trans. A 41, 33183325 (2010).
7. Ahn, Y.S., Kim, H.D., Byun, T.S., Oh, Y.J., Kim, G.M., and Hong, J.H.: Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel. Nucl. Eng. Des. 194, 161177 (1999).
8. Chen, Y.Y., Cheng, B.G., and Liu, D.S.: Effect of intercritical quenching on properties and microstructure evolution of NV-F690 steel. Heat Treat. Met. 37, 7782 (2012). (in Chinese).
9. Liu, Q.D., Wen, H.M., Zhang, H., Gu, J.F., Li, C.W., and Lavernia, E.J.: Effect of multistage heat treatment on microstructure and mechanical properties of high-strength low-alloy steel. Metall. Mater. Trans. A 47, 19601974 (2016).
10. Fultz, B., Kim, J.I., Kim, Y.H., Kim, H.J., Fior, G.O., and Morris, J.W. Jr: The stability of precipitated austenite and the toughness of 9Ni steel. Metall. Trans. A 16, 22372249 (1985).
11. Othen, P.J., Jenkins, M.L., Smith, G.D.W., and Phythian, W.J.: Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos. Mag. Lett. 64, 383391 (1991).
12. Kolli, R.P. and Seidman, D.N.: The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel. Acta Mater. 56, 20732088 (2008).
13. Kolli, R.P., Mao, Z.G., Seidman, D.N., and Keane, D.T.: Identification of a Ni0.5(Al0.5−x Mn x ) B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl. Phys. Lett. 91, 241903 (2007).
14. Nakada, N., Tsuchiyama, T., Takaki, S., Ponge, D., and Raabe, D.: Transition from diffusive to displacive austenite reversion in low-alloy steel. ISIJ Int. 53, 22752277 (2013).
15. Wei, R., Enomoto, M., Hadian, R., Zurob, H.S., and Purdy, G.R.: Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1C–3Mn–1.5Si alloy. Acta Mater. 61, 697707 (2013).
16. Miller, M.K., Beaven, P.A., and Smith, G.D.W.: A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy. Metall. Trans. A 12, 11971204 (1981).
17. Thomson, R.C. and Miller, M.K.: Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater. 46, 22032213 (1998).
18. Janovec, J., Vyrostkova, A., and Svoboda, M.: Influence of tempering temperature on stability of carbide phases in 2.6Cr–0.7Mo–0.3V steel with various carbon content. Metall. Mater. Trans. A 25, 267275 (1994).
19. Wang, X.J., Sha, G., Shen, Q., and Liu, W.Q.: Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel. Mater. Sci. Eng., A 627, 340347 (2015).
20. Mulholland, M.D. and Seidman, D.N.: Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater. 59, 18811897 (2011).
21. Kolli, R.P. and Seidman, D.N.: Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc. Microanal. 20, 17271739 (2014).
22. Zhang, Z.W., Liu, C.T., Miller, M.K., Wang, X., Wen, Y.R., Fujita, T., Hirata, A., Chen, M.W., Chen, G., and Chin, B.A.: A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci. Rep. 3, 1327 (2013).
23. Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level, 1st ed. (Kluwer Academic/Plenum Publishers, New York, 1999).
24. Nakada, N., Tsuchiyama, T., Takaki, S., and Hashizume, S.: Variant selection of reversed austenite in lath martensite. ISIJ Int. 47, 1271532 (2007).
25. Watanabe, S. and Kunitake, T.: Formation of austenite grains from prior martensitic structure. Trans. Iron Steel Inst. Jpn. 16, 2835 (1976).
26. Liu, Q.D. and Zhao, S.J.: Cu precipitation on dislocation and interface in quench-aged steel. MRS Commun. 2, 127132 (2012).
27. Thompson, S.W. and Krauss, G.: Copper precipitation during continuous cooling and isothermal aging of A710-type steels. Metall. Mater. Trans. A 27, 15731588 (1996).
28. Liu, Q.D., Liu, W.Q., and Xiong, X.Y.: Correlation of Cu precipitation with austenite-ferrite transformation in a continuously cooled multicomponent steel: An atom probe tomography study. J. Mater. Res. 27, 10601067 (2012).
29. Liu, Q.D. and Zhao, S.J.: Comparative study on austenite decomposition and copper precipitation during continuously cooling transformation. Metall. Mater. Trans. A 44, 163171 (2013).
30. Liu, Q.D., Li, C.W., Gu, J.F., and Liu, W.Q.: Direct observation of Cu interphase precipitation in continuous cooling transformation by atom probe tomography. Philos. Mag. 94, 305315 (2014).
31. Gorbatov, O.I., Gornostyrev, Y.N., Korzhavyi, P.A., and Ruban, A.V.: Effect of Ni and Mn on the formation of Cu precipitates in α-Fe. Scr. Mater. 102, 1114 (2015).
32. Isheim, D., Gagliano, M.S., Fine, M.E., and Seidman, D.N.: Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 54, 841849 (2006).
33. Schober, M., Eidenberger, E., Leitner, H., Staron, P., Reith, D., and Podloucky, R.: A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe. Appl. Phys. A 99, 697704 (2010).
34. Liu, Q.D., Liu, W.Q., and Zhao, S.J.: Solute behavior in the initial nucleation of V- and Nb-containing carbide. Metall. Mater. Trans. A 42, 39523960 (2011).
35. Ande, C.K. and Sluiter, M.H.F.: First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater. 58, 62766281 (2010).
36. Liu, Q.D., Gu, J.F., and Liu, W.Q.: On the role of Ni in Cu precipitation in multicomponent steels. Metall. Mater. Trans. A 44, 44344439 (2013).
37. Cerezo, A., Hirosawa, S., Rozdilsky, I., and Smith, G.D.W.: Combined atomic-scale modelling and experimental studies of nucleation in the solid state. Philos. Trans. R. Soc., A 361, 463477 (2003).
38. Raabe, D., Sandlobes, S., Millan, J., Ponge, D., Assadi, H., Herbig, M., and Choi, P.P.: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61, 61326152 (2013).

Keywords

Related content

Powered by UNSILO

Interactive formation of Cu-rich precipitate, reverted austenite, and alloyed carbide during partial austenite reversion treatment for high-strength low-alloy steel

  • Qingdong Liu (a1), Chuanwei Li (a2) and Jianfeng Gu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.