Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T03:48:35.976Z Has data issue: false hasContentIssue false

Interaction of surface acoustic waves and ultraviolet light in ZnO films

Published online by Cambridge University Press:  31 January 2011

Parmanand Sharma*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi–110007, India
Sanjeev Kumar
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi–110007, India
K. Sreenivas
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi–110007, India
*
a)Address all correspondence to this author. Present address: Department of Materials Science-Tmfy-MSE, Royal Institute of Technology, S-100 44 Stockholm, Sweden. e-mail: sharmap@ndb.vsnl.net.in
Get access

Abstract

The frequency response of a 37 MHz bulk LiNbO3 surface acoustic wave (SAW) filter with a 200-nm-thick ZnO overlayer exhibited a downshift in the frequency with ultraviolet (UV) light due to acoustoelectric interactions between the photo-generated carriers in the semiconducting ZnO and the surface acoustic waves. In contrast, a 36 MHz ZnO thin film SAW delay-line with insulating ZnO films exhibited an upshift in the frequency. The response was more pronounced at higher harmonics (130–315 MHz) and was attributed to changes in the elastic/dielectric properties in the upper surface layer of ZnO. A linear change in the frequency with UV intensity shows immense applicability for wireless ultraviolet sensor applications.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ballantine, D.S., Jr., White, R.M., Martin, S.J., Ricco, A.J., Frye, G.C., Zellers, E.T., and Wohltjen, H., Acoustic Wave Sensors Theory, Design, and Physico-Chemical Applications (Academic Press, New York, NY, 1997), pp. 1149.Google Scholar
2.Suh, W.D., Jose, K.A., Xavier, P.B., Varadan, V.V., and Varadan, V.K., Smart Mater. Struct. 9, 890 (2000).Google Scholar
3.Joshi, S.G., IEEE Trans. on Ultras. Ferroelec. Freq. Control 38, 148 (1991).CrossRefGoogle Scholar
4.Sharma, P., Gupta, V., Sreenivas, K., and Mansingh, A., in Proc. of 7th National Seminar on Physics and Technology of Sensors, edited by Karekar, R.N., Gangal, S.A. (University of Pune, India, 2000), p. C-20.Google Scholar
5.Slobodnik, A.J., Jr., Proc. IEEE 64(5), 581 (1976).Google Scholar
6.Rotter, M., Rocke, C., Böhm, S., Lorke, A., Wixforth, A., Ruile, W., Korte, L., Appl. Phys. Letts 70, 2097 (1997).Google Scholar
7.Kaneshiro, C., Suda, T., Aoki, Y., Hong, C., Koh, K., and Hokawa, K., Jpn. J. Appl. Phys. 39, 3004 (2000).CrossRefGoogle Scholar
8.Ciplys, D., Rimeika, R., Shur, M.S., Rumyantsev, S., Gaska, R., Sereika, A., Yang, J., and Khan, M.A., Appl. Phys. Lett. 80, 2020 (2002).CrossRefGoogle Scholar
9.Wixforth, A., Wassermeier, M., Scriba, J., Kotthaus, J.P., Weimann, G., and Schlapp, W., Phys. Rev. B 40, 7874 (1989).Google Scholar
10.Simon, S.H., Phys. Rev. B 54, 13878 (1996).Google Scholar
11.Sharma, P., Mansingh, A., and Sreenivas, K., Appl. Phys. Lett. 80, 553 (2002).CrossRefGoogle Scholar
12.Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., and Shen, H., J. Cryst. Growth 225, 110 (2001).Google Scholar
13.Hickernell, F.S., J. Vac. Sci. Technol. 12, 879 (1975).Google Scholar
14.Zhang, D.H. and Brodie, D.E., Thin Solid Films 251, 151 (1994).CrossRefGoogle Scholar
15.Sharma, P., Sreenivas, K., and Rao, K.V., J. Appl. Phys. (2003, in press).Google Scholar
16.Choi, K.H., Kim, J.Y., Kim, H.J., Yang, H.K., Park, J. C., IEEE Ultrasonic Symp. 1, 353 (2000).Google Scholar
17.Didenko, I.S., Hickernell, F.S., and Naumenko, N.F., IEEE Ultrasonic Symp. 1, 313 (1999).Google Scholar
18.Martin, S.J., Frye, G.C., Ricco, A.J., and Zipperian, T.E., Ultrasonic Symposium, 563 (1987).Google Scholar
19.Farnell, G.W. and Adler, E.L., in Physical Acoustic Principles and Methods, edited by Mason, W.P., Thurston, R.N. (Academic Press, New York, NY, 1972), Vol. 9, p. 77.Google Scholar