Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T14:49:49.760Z Has data issue: false hasContentIssue false

Integrated ferroics for sensing, power, RF, and µ-wave electronics

Published online by Cambridge University Press:  12 October 2018

Yingxue Guo
Affiliation:
W.M. Keck Laboratory for Integrated Ferroics, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
Ryan Quinlan
Affiliation:
W.M. Keck Laboratory for Integrated Ferroics, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
Neville Sun
Affiliation:
W.M. Keck Laboratory for Integrated Ferroics, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
Hwaider Lin*
Affiliation:
W.M. Keck Laboratory for Integrated Ferroics, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
Nian Xiang Sun
Affiliation:
W.M. Keck Laboratory for Integrated Ferroics, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, USA
*
a)Address all correspondence to this author. e-mail: lin.hw@husky.neu.edu
Get access

Abstract

Strong magnetoelectric (ME) coupling realized in magnetic/ferroelectric multiferroic heterostructures provides great potential for different integrated multiferroic devices for sensing, power, RF, and µ-wave electronics. Here, we present the most recent progress on new integrated multiferroic devices including novel integrated magnetic tunable inductors with a wide operation frequency range; integrated nonreciprocal bandpass filter with dual H- and E-field tunability based on magnetostatics surface waves; dual H- and E-field tunable RF bandpass filters with nanomechanical ME resonators; RF nanomechanical ME resonators with pico-Tesla DC magnetic fields sensitivity; a new antenna miniaturization mechanism, acoustically actuated nanomechanical ME antennas, which successfully miniaturize the magnitude in 1-2 orders with the advantages of the high magnetic field sensitivity, highest antenna gain within all nanoscale antennas at the similar frequency, and ground plane immunity on the metallic surface and the human body.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).Google Scholar
Ramesh, R. and Spaldin, N.A.: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
Vaz, C., Hoffman, J., Ahn, C., and Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).CrossRefGoogle ScholarPubMed
Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153 (2010).CrossRefGoogle Scholar
Martin, L.W., Chu, Y.H., and Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. 68, 89 (2010).CrossRefGoogle Scholar
Ma, J., Hu, J., Li, Z., and Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).CrossRefGoogle ScholarPubMed
Lou, J., Liu, M., Reed, D., Ren, Y., and Sun, N.X.: Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate–lead titanate (PZN–PT) heterostructures. Adv. Mater. 21, 4711 (2009).CrossRefGoogle Scholar
Liu, M., Obi, O., Lou, J., Chen, Y., Cai, Z., Stoute, S., Espanol, M., Lew, M., Situ, X., Ziemer, K.S., Harris, V.G., and Sun, N.X.: Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19, 1826 (2009).CrossRefGoogle Scholar
Liu, M., Lou, J., Li, S., and Sun, N.X.: E‐Field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv. Funct. Mater. 21, 2593 (2011).CrossRefGoogle Scholar
Sun, N.X. and Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 2, 1240004 (2012).CrossRefGoogle Scholar
Liu, M., Howe, B.M., Grazulis, L., Mahalingam, K., Nan, T., Sun, N.X., and Brown, G.J.: Voltage impulse induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater. 25, 4886 (2013).CrossRefGoogle ScholarPubMed
Liu, M., Zhou, Z., Nan, T., Howe, B.M., Brown, G.J., and Sun, N.X.: Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy‐efficient magnetoelectric composites. Adv. Mater. 25, 1435 (2013).CrossRefGoogle ScholarPubMed
Lin, H., Gao, Y., Wang, X., Nan, T., Liu, M., Lou, J., Yang, G., Zhou, Z., Yang, X., Wu, J., Li, M., Hu, Z., and Sun, N.X.: Integrated magnetics and multiferroics for compact and power-efficient sensing, memory, power, RF, and microwave electronics. IEEE Trans. Magn. 52 (2016).CrossRefGoogle Scholar
Dong, S., Li, J.F., and Viehland, D.: Ultrahigh magnetic field sensitivity in laminates of terfenol-D and Pb (Mg1/3 Nb2/3) O3–PbTiO3 crystals. Appl. Phys. Lett. 83, 2265 (2003).CrossRefGoogle Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., and Viehland, D.: Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88 (2006).CrossRefGoogle Scholar
Sreenivasulu, G., Laletin, U., Petrov, V.M., Petrov, V.V., and Srinivasan, G.: A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 100 (2012).Google Scholar
Dong, S., Zhai, J., Li, J.F., Viehland, D., and Priya, S.: Multimodal system for harvesting magnetic and mechanical energy. Appl. Phys. Lett. 93, 103511 (2008).CrossRefGoogle Scholar
Onuta, T.D., Wang, Y., Long, C.J., and Takeuchi, I.: Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).CrossRefGoogle Scholar
Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.H., He, Q., Balke, N., Yang, C.H., Lee, D., Hu, W., and Zhan, Q.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).CrossRefGoogle ScholarPubMed
Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., and Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).CrossRefGoogle Scholar
Wu, T., Bur, A., Zhao, P., Mohanchandra, K.P., Wong, K., Wang, K.L., Lynch, C.S., and Carman, G.P.: Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1−x)–[PbTiO3]x heterostructure. Appl. Phys. Lett. 98, 012504 (2011).Google Scholar
Liu, M., Li, S., Obi, O., Lou, J., Rand, S., and Sun, N.X.: Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics. Appl. Phys. Lett. 98, 222509 (2011).CrossRefGoogle Scholar
Hu, J.M., Li, Z., Chen, L.Q., and Nan, C.W.: High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011).CrossRefGoogle ScholarPubMed
Nan, T.X., Zhou, Z.Y., Lou, J., Liu, M., Yang, X., Gao, Y., Rand, S., and Sun, N.X.: Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Appl. Phys. Lett. 100, 132409 (2012).CrossRefGoogle Scholar
Lou, J., Reed, D., Liu, M., and Sun, N.X.: Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett. 94, 112508 (2009).CrossRefGoogle Scholar
Liu, G., Cui, X., and Dong, S.: A tunable ring-type magnetoelectric inductor. J. Appl. Phys. 108, 094106 (2010).CrossRefGoogle Scholar
Yang, G.M., Lou, J., Wu, J., Liu, M., Wen, G., Jin, Y., and Sun, N.X.: Dual H- and E-field tunable multiferroic bandpass filters with yttrium iron garnet film. In IEEE MTT-S International Microwave Symposium (Baltimore, Maryland, June 5–10, 2011).Google Scholar
Tatarenko, A.S., Gheevarughese, V., and Srinivasan, G.: Magnetoelectric microwave bandpass filter. Electron. Lett. 42, 540 (2006).CrossRefGoogle Scholar
Pettiford, C., Dasgupta, S., Lou, J., Yoon, S.D., and Sun, N.X.: Bias field effects on microwave frequency behavior of PZT/YIG magnetoelectric bilayer. IEEE Trans. Magn. 43, 3343 (2007).CrossRefGoogle Scholar
Fetisov, Y.L. and Srinivasan, G.: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).CrossRefGoogle Scholar
Tatarenko, A.S., Srinivasan, G., and Bichurin, M.I.: Magnetoelectric microwave phase shifter. Appl. Phys. Lett. 88, 183507 (2006).CrossRefGoogle Scholar
Yang, G.M. and Sun, N.X.: Tunable ultrawideband phase shifters with magnetodielectric disturber controlled by a piezoelectric transducer. IEEE Trans. Magn. 50, 1 (2014).Google Scholar
Zhou, Z., Obi, O., Nan, T., Beguhn, S., Lou, J., Yang, X., Gao, Y., Li, M., Rand, S., Lin, H., and Sun, N.X.: Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling. J. Mater. Sci.: Mater. Electron. 25, 1188 (2014).Google Scholar
Zhou, Z., Zhang, X.Y., Xie, T.F., Nan, T., Gao, Y., Yang, X., Wang, X.J., He, X.Y., Qiu, P.S., Sun, N.X., and Sun, D.Z.: Strong non-volatile voltage control of magnetism in magnetic/antiferroelectric magnetoelectric heterostructures. Appl. Phys. Lett. 104, 012905 (2014).CrossRefGoogle Scholar
Nan, T., Zhou, Z., Liu, M., Yang, X., Gao, Y., Assaf, B.A., Lin, H., Velu, S., Wang, X., Luo, H., and Chen, J.: Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep. 4, 3688 (2014).CrossRefGoogle ScholarPubMed
Gao, Y., Zare, S., Yang, X., Nan, T., Zhou, Z.Y., Onabajo, M., O’Brien, K.P., Jalan, U., EI-tatani, M., Fisher, P., and Liu, M.: High quality factor integrated gigahertz magnetic transformers with FeGaB/Al2O3 multilayer films for radio frequency integrated circuits applications. J. Appl. Phys. 115, 17E714 (2014).CrossRefGoogle Scholar
Liu, M. and Sun, N.X.: Voltage control of magnetism in multiferroic heterostructures. Phil. Trans. Math. Phys. Eng. Sci. 372, 20120439 (2014).CrossRefGoogle ScholarPubMed
Zhou, Z., Nan, T., Gao, Y., Yang, X., Beguhn, S., Li, M., Lu, Y., Wang, J.L., Liu, M., Mahalingam, K., and Howe, B.M.: Quantifying thickness-dependent charge mediated magnetoelectric coupling in magnetic/dielectric thin film heterostructures. Appl. Phys. Lett. 103, 232906 (2013).CrossRefGoogle Scholar
Yang, X., Wu, J., Beguhn, S., Nan, T., Gao, Y., Zhou, Z., and Sun, N.X.: Tunable bandpass filter using partially magnetized ferrites with high power handling capability. IEEE Microw. Wireless Compon. Lett. 23, 184 (2013).CrossRefGoogle Scholar
Yang, X., Wu, J., Gao, Y., Nan, T., Zhou, Z., Beguhn, S., and Sun, N.X.: Compact and low loss phase shifter with low bias field using partially magnetized ferrite. IEEE Trans. Magn. 49, 3882 (2013).CrossRefGoogle Scholar
Yang, X., Gao, Y., Wu, J., Beguhn, S., Nan, T., Zhou, Z., Liu, M., and Sun, N.X.: Dual H-and E-field tunable multiferroic bandpass filter at Ku band using partially magnetized spinel ferrites. IEEE Trans. Magn. 49, 5485 (2013).CrossRefGoogle Scholar
Li, M., Zhou, Z., Liu, M., Lou, J., Oates, D.E., Dionne, G.F., Wang, M.L., and Sun, N.X.: Novel NiZnAl-ferrites and strong magnetoelectric coupling in NiZnAl-ferrite/PZT multiferroic heterostructures. J. Appl. Phys. 46, 275001 (2013).Google Scholar
Yang, X., Wu, J., Lou, J., Xing, X., Oate, D.E., Dionne, G.F., and Sun, N.X.: Compact tunable bandpass filter on YIG substrate. Electron. Lett. 48, 1070 (2012).CrossRefGoogle Scholar
Zhou, Z., Beguhn, S., Lou, J., Rand, S., Li, M., Yang, X., Li, S.D., Liu, M., and Sun, N.X.: Low moment NiCr radio frequency magnetic films for multiferroic heterostructures with strong magnetoelectric coupling. J. Appl. Phys. 111, 103915 (2012).CrossRefGoogle Scholar
Lou, J., Pellegrini, G.N., Liu, M., Mathur, N.D., and Sun, N.X.: Equivalence of direct and converse magnetoelectric coefficients in strain-coupled two-phase systems. Appl. Phys. Lett. 100, 102907 (2012).CrossRefGoogle Scholar
Yang, G.M., Obi, O., Wen, G., and Sun, N.X.: Design of tunable bandpass filters with ferrite sandwich materials by using a piezoelectric transducer. IEEE Trans. Magn. 47, 3732 (2011).CrossRefGoogle Scholar
Lou, J., Liu, M., Reed, D., Ren, Y.H., and Sun, N.X.: Electric field modulation of surface anisotropy and magneto-dynamics in multiferroic heterostructures. J. Appl. Phys. 109, 07D731 (2011).CrossRefGoogle Scholar
Liu, M., Obi, O., Lou, J., Stoute, S., Cai, Z., Ziemer, K., and Sun, N.X.: Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J. Phys. D: Appl. Phys. 42, 045007 (2009).CrossRefGoogle Scholar
Yang, G.M., Obi, O., and Sun, N.X.: Enhancing ground plane immunity of dipole antennas with spin-spray‐deposited lossy ferrite films. Microw. Opt. Technol. Lett. 54, 230 (2012).CrossRefGoogle Scholar
Yang, G.M., Xing, X., Daigle, A., Obi, O., Liu, M., Lou, J., Stoute, S., Naishadham, K., and Sun, N.X.: Planar annular ring antennas with multilayer self-biased NiCo-ferrite films loading. IEEE Trans. Antenn. Propag. 58, 648 (2010).CrossRefGoogle Scholar
Yang, G.M., Xing, X., Obi, O., Daigle, A., Liu, M., Stoute, S., Naishadham, K., and Sun, N.X.: Loading effects of self-biased magnetic films on patch antennas with substrate/superstrate sandwich structure. IET Microw., Antennas Propag. 4, 1172 (2010).CrossRefGoogle Scholar
Yang, G.M., Xing, X., Daigle, A., Liu, M., Obi, O., Stoute, S., Naishadham, K., and Sun, N.X.: Tunable miniaturized patch antennas with self-biased multilayer magnetic films. IEEE Trans. Antenn. Propag. 57, 2190 (2009).CrossRefGoogle Scholar
Yang, G.M., Jin, R.H., Xiao, G.B., Vittoria, C., Harris, V.G., and Sun, N.X.: Ultrawideband (UWB) antennas with multiresonant split-ring loops. IEEE Trans. Antennas Propag. 57, 256 (2009).CrossRefGoogle Scholar
Yang, G.M., Daigle, A., Liu, M., Obi, O., Stoute, S., Naishadham, K., and Sun, N.X.: Planar circular loop antennas with self-biased magnetic film loading. Electron. Lett. 44, 332 (2008).CrossRefGoogle Scholar
Nan, T., Lin, H., Gao, Y., Matyushov, A., Yu, G., Chen, H., Sun, N., Wei, S., Wang, Z., Li, M., Wang, X., Belkessam, A., Guo, R., Chen, B., Zhou, J., Qian, Z., Hui, Y., Rinaldi, M., McConney, M.E., Howe, B.M., Hu, Z., Jones, J.G., Brown, G.J., and Sun, N.X.: Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 8, 296 (2017).CrossRefGoogle ScholarPubMed
Lim, L.C., Rajan, K.K., and Jin, J.: Characterization of flux-grown PZN-PT single crystals for high-performance piezo devices. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 54 (2007).Google ScholarPubMed
Liu, M., Li, S., Zhou, Z., Beguhn, S., Lou, J., Xu, F., Lu, T.J., and Sun, N.X.: Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. J. Appl. Phys. 112, 063917 (2012).CrossRefGoogle Scholar
Gao, Y., Zardareh, S.Z., Yang, X., Nan, T., Zhou, Z.Y., Onabajo, M., Liu, M., Aronow, A., Mahalingam, K., Howe, B.M., and Brown, G.J.: Significantly enhanced inductance and quality factor of GHz integrated magnetic solenoid inductors with FeGaB/Al2O3 multilayer films. IEEE Trans. Electron Devices 61, 1470 (2014).Google Scholar
Gao, Y., Zare, S., Onabajo, M., Li, M., Zhou, Z., Nan, T., Yang, X., Liu, M., Mahalingam, K., Howe, B.M., and Jones, J.G.: Power-efficient voltage tunable RF integrated magnetoelectric inductors with FeGaB/Al2O3 multilayer films. In IEEE MTT-S International Microwave Symposium (Tampa, Florida, 2014).Google Scholar
Lin, H., Wu, J., Yang, X., Hu, Z., Nan, T., Emori, S., Gao, Y., Guo, R., Wang, X., and Sun, N.X.: Integrated non-reciprocal dual H-and E-field tunable bandpass filter with ultra-wideband isolation. In IEEE MTT-S International Microwave Symposium (Phoenix, Arizona, 2015).Google Scholar
Lin, H., Nan, T., Qian, Z., Gao, Y., Hui, Y., Wang, X., Guo, R., Belkessam, A., Shi, W., Rinaldi, M., and Sun, N.X.: Tunable RF band-pass filters based on NEMS magnetoelectric resonators. In IEEE MTT-S International Microwave Symposium (IMS) (San Francisco, California, 2016).Google Scholar
Dong, S., Cheng, J., Li, J.F., and Viehland, D.: Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb (Zr, Ti) O3 under resonant drive. Appl. Phys. Lett. 83, 4812 (2003).CrossRefGoogle Scholar
Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knöchel, R., Quandt, E., and Meyners, D.: Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523 (2012).CrossRefGoogle ScholarPubMed
Israel, C., Mathur, N.D., and Scott, J.F.: A one-cent room-temperature magnetoelectric sensor. Nat. Mater. 7, 93 (2008).CrossRefGoogle ScholarPubMed
Zhao, P., Zhao, Z., Hunter, D., Suchoski, R., Gao, C., Mathews, S., Wuttig, M., and Takeuchi, I.: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).CrossRefGoogle Scholar
Greve, H., Woltermann, E., Quenzer, H.J., Wagner, B., and Quandt, E.: Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).CrossRefGoogle Scholar
Marauska, S., Jahns, R., Kirchhof, C., Claus, M., Quandt, E., Knöchel, R., and Wagner, B.: Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sens. Actuators, A 189, 321 (2013).CrossRefGoogle Scholar
Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.: Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators, A 183, 16 (2012).CrossRefGoogle Scholar
Wang, Y., Gray, D., Berry, D., Li, J., and Viehland, D.: Self-amplified magnetoelectric properties in a dumbbell-shaped magnetostrictive/piezoelectric composite. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 59, 5 (2012).CrossRefGoogle Scholar
Zhai, J., Xing, Z., Dong, S., Li, J., and Viehland, D.: Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 91, 351 (2008).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J., and Viehland, D.: Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).CrossRefGoogle Scholar
Nan, C.W., Liu, G., Lin, Y., and Chen, H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).CrossRefGoogle ScholarPubMed
Dong, S., Zhai, J., Bai, F., Li, J.F., and Viehland, D.: Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87, 062502 (2005).CrossRefGoogle Scholar
Wang, Y., Li, J., and Viehland, D.: Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 1, 269 (2014).CrossRefGoogle Scholar
Zhai, J., Li, J., Dong, S., Viehland, D., and Bichurin, M.I.: A quasi (unidirectional) Tellegen gyrator. J. Appl. Phys. 100, 124509 (2006).CrossRefGoogle Scholar
Tatarenko, A.S. and Bichurin, M.I.: Electrically tunable resonator for microwave applications based on hexaferrite-piezoelectrc layered structure. J. Phys.: Condens. Matter 2, 135 (2012).Google Scholar
Bichurin, M.I., Petrov, V.M., Petrov, R.V., and Tatarenko, A.S.: Magnetoelectric magnetometers. In High Sensitivity Magnetometers (2017); p. 127.CrossRefGoogle Scholar
Bichurin, M.I. and Petrov, V.M.: Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites. Adv. Condens. Matter Phys. 2012 (2012).CrossRefGoogle Scholar
Petrov, R.V., Solovyev, I.N., Soloviev, A.N., and Bichurin, M.I.: Magnetoelectric current sensor. In PIERS Proceedings (2013).Google Scholar
Dong, S., Bai, J.G., Zhai, J., Li, J.F., Lu, G-Q., Viehland, D., Zhang, S., and Shrout, T.R.: Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite—A highly sensitive electric current and/or vortex magnetic field sensor. Appl. Phys. Lett. 86, 182506 (2005).CrossRefGoogle Scholar
Dong, S., Li, J.F., and Viehland, D.: Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 85, 2307 (2004).CrossRefGoogle Scholar
Dong, S., Li, J.F., and Viehland, D.: Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings. J. Appl. Phys. 96, 3382 (2004).CrossRefGoogle Scholar
Bichurin, M.I., Petrov, V.M., Petrov, R.V., Kapralov, G.N., Kiliba, Y.V., Bukashev, F.I., Yu Smirnov, A., and Tatarenko, A.S.: Magnetoelectric microwave devices. Ferroelectrics 280, 211 (2002).CrossRefGoogle Scholar
Nguyen, T.T., Bouillault, F., Daniel, L., and Mininger, X.: Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect. J. Appl. Phys. 109, 084904 (2011).CrossRefGoogle Scholar
Nan, T., Hui, Y., Rinaldi, M., and Sun, N.X.: Self-biased 215MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).CrossRefGoogle Scholar
Kramer, B.A., Chen, C.C., Lee, M., and Volakis, J.L.: Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas. IEEE Antenn. Propag. Mag. 51, 57 (2009).CrossRefGoogle Scholar
Mosallaei, H. and Sarabandi, K.: Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 52, 2403 (2004).CrossRefGoogle Scholar
Skrivervik, A.K., Zürcher, J.F., Staub, O., and Mosig, J.R.: PCS antenna design: The challenge of miniaturization. IEEE Antenn. Propag. Mag. 43, 12 (2001).CrossRefGoogle Scholar
Gianvittorio, J.P. and Rahmat-Samii, Y.: Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antenn. Propag. Mag. 44, 20 (2002).CrossRefGoogle Scholar
Ikonen, P.M.T., Rozanov, K.N., Osipov, A.V., Alitalo, P., and Tretyakov, S.A.: Magnetodielectric substrates in antenna miniaturization: Potential and limitations. IEEE Trans. Antennas Propag. 54, 3391 (2006).CrossRefGoogle Scholar
Mosallaei, H. and Sarabandi, K.: Magneto-dielectrics in electromagnetics: Concept and applications. IEEE Trans. Antennas Propag. 52, 1558 (2004).CrossRefGoogle Scholar
Yao, Z. and Wang, Y.E.: Bulk Acoustic Wave Mediated Multiferroic Antennas Near Ferromagnetic Resonance (APS/URSI, Vancouver, British Columbia, Canada, July 19–24, 2015).Google Scholar
Yao, Z., Wang, Y.E., Keller, S., and Carman, G.P.: Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound. IEEE Trans. Antenn. Propag. 63, 3335 (2015).CrossRefGoogle Scholar
Yao, Z. and Wang, Y.E.: 3D ADI-FDTD Modeling of Platform Reduction With Thin Film Ferromagnetic Material (APS/URSI, Fajardo, Puerto Rico, June 26–July 1, 2016).CrossRefGoogle Scholar
Xu, W.G.Q. and Wang, Y.E.: Two Dimensional (2D) Complex Permeability Characterization of Thin Film Ferromagnetic Material (IEEE CAMA, Syracuse, New York, Oct. 23–27, 2016).Google Scholar
Domann, J.P. and Carman, G.P.: Strain powered antennas. J. Appl. Phys. 121, 044905 (2017).CrossRefGoogle Scholar