Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-11T14:46:29.426Z Has data issue: false hasContentIssue false

Initial growth mechanism of Yba2Cu3Oycrystal on MgO substrate by liquid-phase epitaxy

Published online by Cambridge University Press:  31 January 2011

Katsumi Nomura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Saburo Hoshi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Yuichi Nakamura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Teruo Izumi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Yuh Shiohara
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1–10–13 Shinonome, Koto-ku, Tokyo 135–0062, Japan
Get access

Abstract

Initial growth features of Yba2Cu3Oy (YBCO) crystal on an MgO substrate by a liquid-phase epitaxy (LPE) process were investigated and compared with homoepitaxial growth on a YBCO substrate. The partial dissolution of the seed grains in the initial stage of the LPE growth was influenced by the crystallinity of in-plane alignment of the seed grains, which could be explained by the preferential dissolution and growth mechanism. Concurrently, the slope angle of the growth grain varied with growth time. The opposite tendency of the slope angle change between the hetero- and the homoepitaxial growth was observed and could be explained by considering the difference in the step-advancing rates on each interface. It could be understood that the formation of entrapped liquid inclusions was the combination phenomena of both the small step-advancing rate of YBCO crystal on the MgO surface and the roughening of the MgO surface due to the partial dissolution of MgO to the solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J.G. and Muller, K.A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Hato, T., Aso, H., Ishimaru, Y., Yoshida, A., and Yokoyama, N., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1155.CrossRefGoogle Scholar
3Hattori, W., Yoshitake, T., and Tahara, S., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1263.CrossRefGoogle Scholar
4Becht, M., Wen, J.G., Saba, F.M., Miura, S., and Tanabe, K., in Advances in Superconductivity XI, edited by Koshizuka, N. and Tajima, S. (Springer-Verlag, Tokyo, Japan, 1999), p. 1075.CrossRefGoogle Scholar
5Belt, B.F., Ings, J., and Diercks, G., Appl. Phys. Lett. 56, 1805 (1990).CrossRefGoogle Scholar
6Perng, L.H., Chin, T.S., Chen, K.C., and Lin, C.H., Supercond. Sci. Technol. 3, 233 (1990).CrossRefGoogle Scholar
7Dubs, C., Fischer, K., and Gornert, P., J. Cryst. Growth 123, 611 (1992).CrossRefGoogle Scholar
8Klemenz, C. and Sheel, H.J., J. Cryst. Growth 129, 421 (1993).CrossRefGoogle Scholar
9Scheel, H.J., Klementz, C., Reinhalt, F-K., Lang, H.P., and Guntherodt, H-J., Appl. Phys. Lett. 65, 901 (1994).CrossRefGoogle Scholar
10Miura, S., Hashimoto, K., Wang, F., Enomoto, Y., and Morishita, T., Physica C 278, 201 (1997).CrossRefGoogle Scholar
11Yao, X., Nomura, K., Izumi, T., and Shiohara, Y., in Extended Abstracts, 2000 International Workshop on Superconductivity, Shimane, Japan (ISTEC, Tokyo, Japan, 2000), p. 78.Google Scholar
12Tanaka, N., Hashimoto, K., Zama, H., Miura, S., Morishita, T., and Yamamoto, H., IEEE Trans. Appl. Supercond. 9, 1634 (1999).CrossRefGoogle Scholar
13Nomura, K., Hoshi, S., Nakamura, Y., Izumi, T., and Shiohara, Y., Jpn. J. Appl. Phys. (submitted).Google Scholar
14Ishida, Y., Kimura, T., Kakimoto, K., Yamada, Y., Nakagawa, Z., Shiohara, Y., and Sawaoka, A.B., Physica C 292, 264 (1997).CrossRefGoogle Scholar
15Kakimoto, K., Ishida, Y., Kimura, T., and Shiohara, Y., in Advances in Superconductivity X, edited by Osamura, K. and Hirabayashi, I. (Springer-Verlag, Tokyo, Japan, 1998), p. 1037.CrossRefGoogle Scholar
16Kakimoto, K., Sugawara, Y., Izumi, T., and Shiohara, Y., Physica C 334, 249 (2000).CrossRefGoogle Scholar
17Izumi, T., Kakimoto, K., Nomura, K., and Shiohara, Y., J. Cryst. Growth 219, 228 (2000).CrossRefGoogle Scholar
18Nomura, K., Hoshi, S., Yao, X., Kakimoto, K., Nakamura, Y., Izumi, T., and Shiohara, Y., J. Mater. Res. 16, 979 (2001).CrossRefGoogle Scholar
19Yuhya, S., Kikuchi, K., and Shiohara, Y., J. Mater. Res. 7, 2673 (1992).CrossRefGoogle Scholar
20Tsujino, J., Tatsumi, N., and Shiohara, Y., Physica C 235, 583 (1994).CrossRefGoogle Scholar
21Suzuki, K., Hasegawa, N., Nakada, H., Suzuki, T., and Enomoto, Y., IEEE Trans. Appl. Supercond. 11, 119 (2001).CrossRefGoogle Scholar
22Uchida, T., Yazaki, H., Yasuoka, Y., and Suzuki, K., Physica C 357–360, 1596 (2001).CrossRefGoogle Scholar
23Yamada, Y. and Shiohara, Y., Physica C 217, 182 (1993).CrossRefGoogle Scholar
24Mullins, W.W., Metal Surfaces-Structure, Energetics, Kinetics (American Society for Metals, Metals Park, OH, 1963), p. 17.Google Scholar
25Trivedi, R., Lectures on the Theory of Phase Transformations, edited by Aaronson, H.I. (Transactions of the Metallurgical Society of AIME, New York, 1975), p. 51.Google Scholar
26Kakimoto, K., Hobara, N., Nakamura, Y., Izumi, T., Fujino, K., Ohmatsu, K., and Shiohara, Y., Physica C 341–348, 2489 (2000).CrossRefGoogle Scholar
27Kakimoto, K., Hobara, N., Krauns, C., Nakamura, Y., Izumi, T., and Shiohara, Y., in Advances in Superconductivity XII, edited by Yamashita, T. and Tanabe, K. (Springer-Verlag, Tokyo, Japan, 2000), p. 592.CrossRefGoogle Scholar
28Bennema, P., J. Cryst. Growth 1, 278 (1967).CrossRefGoogle Scholar
29Bennema, P. and Gilmer, G.H., Crystal Growth, An Introduction, edited by Hartman, P. (North-Holland, Amsterdam, The Nether-lands, 1973), p. 263.Google Scholar