Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T03:55:21.477Z Has data issue: false hasContentIssue false

Influence of oxygen partial pressure on the kinetics of YBa2Cu3O7−x formation

Published online by Cambridge University Press:  03 March 2011

V. Milonopoulou
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
K.M. Forster
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
J.P. Formica
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
J. Kulik
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
J.T. Richardson
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
D. Luss*
Affiliation:
Department of Chemical Engineering and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4792
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

The YBa2Cu3O7−x formation kinetics from a spray-roasted precursor powder containing Y2O3, BaCO3, and CuO was followed via in situ, time-resolved x-ray diffraction as a function of gas atmosphere and temperature. In inert atmospheres, BaCO3 and CuO form BaCu2O2 which subsequently reacts with Y2O3 to form YBa2Cu3O6. However, YBa2Cu3O6 decomposes at temperatures exceeding 725 °C with Y2BaCuO5 being one of the decomposition products. In oxidizing atmospheres, YBa2Cu3O7−x formation involves the BaCuO2. At high temperatures (800–840 °C), oxygen increases the yield of YBa2Cu3O6. A nuclei growth model assuming two-dimensional, diffusion-controlled growth with second-order nucleation rate fits the experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jiang, X. P., Zhang, J. S., Huang, J. G., Jiang, M., Qiao, G. W., Hu, Z. Q., and Shi, C. X., Mater. Lett. 7 (7,8), 250255 (1988).Google Scholar
2Ruckenstein, E., Narain, S., and Wu, N-L., J. Mater. Res. 4, 267272 (1989).Google Scholar
3Gallagher, P. K. and Fleming, D. A., Chem. Mater. 1, 659664 (1989).Google Scholar
4Thomson, W. J., Wang, H., Parkman, D. B., Li, D. X., Strasik, M., Luhman, T. S., Han, C., and Aksay, I. A., J. Am. Ceram. Soc. 72 (10), 19771979 (1989).Google Scholar
5Gadalla, A. M. and Hegg, T., Thermochim. Acta 145, 149163 (1989).Google Scholar
6Shelukar, S. D., Sundar, H.G.K., Semiat, R., Richardson, J. T., and Luss, D., J. Am. Ceram. Soc. 76 (2), 518522 (1992).Google Scholar
7Merryman, R. G. and Kempter, C. P., J. Am. Ceram. Soc. 48 (4), 202205 (1965).CrossRefGoogle Scholar
8Forster, K. M., Formica, J. P., Richardson, J. T., and Luss, D., J. Solid State Chem. (in press).Google Scholar
9Rietveld, H. M., J. Appl. Crystallogr. 2, 6571 (1969).Google Scholar
10GSAS, General Structure Analysis System, released February 4, 1992 [Los Alamos Neutron Scattering Center (LANSCE), Los Alamos, NM, 1992].Google Scholar
11Formica, J. P., Forster, K. M., Richardson, J. T., and Luss, D., AlChE Symposium Series 287–Superconductor Engineering, edited by Mensah, T.O. 88, 110 (1992).Google Scholar
12Grader, G. S., Gallagher, P. K., and Fleming, D. A., Chem. Mater. 1, 665668 (1989).CrossRefGoogle Scholar
13Powder Diffraction File, Sets 1–41, International Centre for Diffraction Data, Swarthmore, PA (1992).Google Scholar
14Shieh, S. H. and Thomson, W. J., Physica C 204, 135146 (1992).CrossRefGoogle Scholar
15Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Serge, C. U., Zhang, K., and Kleeflsch, M. S., Phys. Rev. B 36 (7), 36083616 (1987).Google Scholar
16Spann, J. R., Lloyd, I. K., Kahn, M., and Chase, M. T., J. Am. Ceram. Soc. 73 (2), 435438 (1990).Google Scholar
17Aksay, I. A., Han, C., Maupin, G. D., Martin, C. B., Kurosky, R. P., and Stangle, G. C., U.S. Patent 5 061682 (1991).Google Scholar
18Froment, G. F. and Bischoff, K. B., Chemical Reactor Analysis andDesign, 2nd ed. (John Wiley, New York, 1990).Google Scholar
19Hulbert, S. F., J. Brit. Ceram. Soc. 6, 1120 (1969).Google Scholar
20Wu, N-L., Wei, T-C., Hou, S-Y., and Wong, S-Y., J. Mater. Res. 5, 20562065 (1990).CrossRefGoogle Scholar
21Avrami, M., J. Chem. Phys. 7, 11031112 (1939); 8, 212224 (1940); 9, 177184 (1941).CrossRefGoogle Scholar
22Zhu, W. and Nicholson, P. S., J. Mater. Res. 7, 3842 (1992).Google Scholar
23Luo, J. S., Merchant, N., Aparicio, E. E., Maroni, V. A., Gruen, D.M., Tani, B. S., Riley, G. N., and Carter, W. L., IEEE Trans. Appl. Supercond. 3 (1), 972975 (1993).CrossRefGoogle Scholar
24Danusantoso, J. and Chaki, T. K., Supercond. Sci. Technol. 4, 509519 (1991).Google Scholar